Thermal Analysis and Management of Multi-core Systems

Prof. William Fornaciari
Politecnico di Milano, DEIB
Dipartimento di Elettronica, Informazione e Bioingegneria
Via Ponzio 34/5, 20133, Milano, ITALY
william.fornaciari@polimi.it
Outline

• Introduction
 – Application needs, multi-core trend and design showstoppers
 – HEAP Lab

• Thermal-Performance analysis
 – Thermal analysis and DVFS policy development
 – Run-Time Resource Manager

• Conclusions
 – Ongoing work
 – Exploitable results and projects
Main topics from the HiPEAC 2020 vision

Energy and power dissipation: the newest technology nodes made things even worse.

Dependability, which affects security, safety and privacy, is a major concern.

Complexity is reaching a level where it is nearly unmanageable, and yet still grows due to applications that build on systems of systems.
- Not-exploitable computing power due to limited power dissipation
 - Part of the silicon area is ... *dark silicon*
Industry Changes in Requirements

- **Up to 1980s**: Supercomputers & mainframes
- **1990s**: The personal computer
- **2000s**: Notebooks
- **2010s**: Mobiles & mobility

Functionality

- $ Functionality
- Power × $ Functionality
- Energy × $ Functionality
Application scenarios

High performance

- General purpose, and multimedia
- Large data centers, or data-intensive
- Smartphones, mobile multimedia

Low power

- Low energy
- Reliability, and battery-supplied
- Wireless Sensor Networks
<table>
<thead>
<tr>
<th>Layers</th>
<th>Problems & Solutions</th>
<th>Outputs & Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many cores, HPC</td>
<td>Thermal control for ageing and reliability, Run/time load balancing, Optimization of non functional aspects, Application mapping, Power/energy coarse grain monitoring and control</td>
<td>Tip/Top patent filed in 2016 for thermal control (rack level), BarbequeRTRM HPC extension (open source + commercial customizations), OpenCL backend, OpenMP, MPI, ... Compilers, DSE tools</td>
</tr>
<tr>
<td>Multi-cores, Heterog. Computing High-End ES</td>
<td>Load distribution on heterogeneous cores, power/energy fine grain control, Design of accelerators, Reliability issues</td>
<td>Tip-Top thermal control (firmware), BarbequeRTRM for several commercial boards (Odroid, x86, Zynq, Panda, ...), NoC, Simulation toolchain (HANDS), Memory interface optimization, DVFS exploitation, Compilers, DSE tools</td>
</tr>
<tr>
<td>Low-end embedded systems</td>
<td>Energy optimization, Size, cost, multi-sensor boards, small footprint OSs, DVFS exploitation</td>
<td>Low level run-time optimization of energy and performance, Application specific design of software and firmware, Development of analysis toolsuite, Power attack - countermeasures</td>
</tr>
<tr>
<td>Wearable CPS, IoT</td>
<td>Design of ultra-low power boards with sensors, feature extraction, security and privacy, WSN clock synchronization</td>
<td>Methodology for clock synch in WSNs, Development of platforms for wearable apps, Use of georef sources of information and GPRS, Miosix open source OS, Privacy and security protocols</td>
</tr>
<tr>
<td>Chip</td>
<td>Thermal modeling, NoC design and optimization, Sensor & Knobs</td>
<td>Tip-Top hw for thermal control, NoC power aware design, Simulation toolchain (HANDS)</td>
</tr>
</tbody>
</table>
Hot spots and Thermal problems

Chip floorplan

Some hot spots in steady state:
- Silicon is a good thermal conductor (only 4x worse than Cu) and temperature gradients are likely to occur on large dies.
- Lower power density than on a high performance CPU (lower frequency and less complex HW)

Steady state temperature
The importance of the thermal transient state

- Thermal transient behavior of a 12-core multi-core considering a frequency step-down from 2GHz to 1GHz at 0.3s of simulation

- Two thermal snapshots are reported to highlight the flexibility of the our flow to compute transient temperature analysis

Thermal dynamic is in the order of 10°C / ms

Steady state analysis is not enough
Dynamic Thermal Management

- Design and simulation of an event-based thermal control policy
- Comparison with fixed rate control
- Experiments on Intel-i7
Dynamic Thermal Management (DTM)

- MPSoC power density keeps increasing
 - 3D die stacking will further exacerbate thermal issues
- Temperature needs to be controlled
 - To prevent immediate failures (e.g: thermal runaway)
 - To increase reliability (e.g: electromigration, NBTI, thermal cycles)
- Solution
 - Employ novel dynamic thermal management to maximize performance under temperature constraints
Facing the monster(s)

- Temperature variation on a chip occur at two timescales
 - A **fast** one whose time constant (3..30ms) is dictated by the silicon bulk thermal capacity
 - A **slow** one whose time constant (seconds, minutes) depends on the heatsink

Data: thermal transient running cpuburn on an Intel Core i7 3630QM
Event-based thermal control: rationale

- DTM policies need to be **lightweight** (low overhead)
- **Problem**
 - timescale at which sensing, control and actuation loop needs to be operated has to be **faster than the timescale of temperature** changes
 - This timescale is expected to shrink (e.g: 3D chips) requiring **sub-millisecond** control
- Conventional DTM policies operate at a fixed rate, by periodically monitoring the temperature
 - This is inflexible, as the rate needs to be set considering worst-case conditions
- **Solution**
 - Dynamic thermal management using **event-based** control theory
Event-based T control: principle of operation

• The software controller configures the event generation state machine to generate an event if:
 • Temperature changes by more than a given threshold from the last time the controller is run (green band)
 • A timeout occurs. Timeouts are progressively increased if temperature changes slowly
• Goal of the controller is keep temperature below a given limit (red line)
Event-based thermal control: architecture

- The proposed solution is based on a hardware-software split.
- A hardware state machine monitors the temperature and generates events upon threshold exceeding or timeout.
- A software interrupt routine runs the controller, preserving the flexibility of a software DTM policy.

\[
\begin{align*}
x_R(k) &= x_R(k-1) + \frac{\mu}{\Gamma} e_T(k-1) \\
u_R(k) &= x_R(k) + \frac{\mu}{\Gamma(1 - e^{-T_s/\tau})} e_T(k)
\end{align*}
\]
Design and validation using the framework

- The proposed DTM policy was designed and simulated using the HANDS framework.
- The simulated architecture is a 24-core 3D chip with two layers (12 cores per layer).
- Cores were running the bitcount benchmark from MiBench, with idle times between executions.
- The temperature limit was set to 85°C.
- Two policies were simulated:
 - The proposed event-based thermal controller.
 - A fixed rate PID policy at 10ms.
Fixed-rate control cannot prevent fast temperature transients despite running every 10ms.

Event-based control keeps temperature limit.

Event-based controller generated many events when temperature changes rapidly, and few events when temperature is nearly constant.
Experimental validation: setup

• Implementation on an Intel Core i7 2640 with ubuntu Linux
• FSM of the event-based controller is software emulated (implemented)
 • The goal is to show the feasibility
 • Lower overhead is expected with Hw/Sw realization (FSM generating events implemented in hw)
• All kernel modules implementing DVFS policies for power-performance and power capping are disabled
• A daemon in user space implementing the controller uses the msr kernel module of Linux is to read temperature and to drive the DVFS
• Synthetic benchmark alternating intense computing phases with high cache miss phases
• Temperature limit 75°C (not to break the Laptop, just demo!)
Experimental validation and comparisons

• To quantify overhead also for the software controller, the obtained code was benchmarked using RDTSCP [17] instructions
 • It takes on average 39 clock cycles on a Core i7 3630QM processor
 • Considering that the processor operates at 2.4GHz, the time required to run the controller code is 16ns (fully sw implementation)

• Note that the frequency is set in accordance to the actual CPU temperature, thus implicitly accounting for mutual thermal influences between CPUs
Experimental validation

- Tested policies
 - Event-based controller
 - Fixed-rate PID

- Alternating intense computation and high cache misses phase produce a variable power consumption for the CPU

- The fixed rate controller is too slow to counteract the fast thermal transients

- The event based controller keeps temperature below the limit
TIPTOP
Tightly Integration of Power and Temperature for Optimal Performance

Priority date: 15/02/2016

Int. Application number: PCT/IT2016/000037

Assignee: Politecnico di Milano, Milano, Italy

Inventors: Alberto Leva, William Fornaciari, Federico Terraneo

Status: Available

Looking for commercial partners and industrial exploitation
Userspace Run-time Resource Management

The BarbequeRTRM

William Fornaciari, Giuseppe Massari, Simone Libutti, Federico Reghenzani
Overview

- The core of the project is a Run-Time Resource Manager for
- Multi/Many-core Systems (the BarbequeRTRM)
 - Scheduling, resource allocation, power management

What the BarbequeRTRM can do?

- Bound the assignment of CPU quota and/or cores
- Bound the assignment of MEMORY
- Bound the assignment of NETWORK bandwidth
- Power/Energy and Thermal management
- QoS monitoring and resource allocation tuning
- Profiling of the application execution

What BarbequeRTRM cannot do?

- React at the time of ms, best performance around 100ms
- Proactive vs “a bit” reactive
The BarbequeRTRM

Layer view
C/C++, OpenMP, OpenCL supported

Application library (RTLib) for synchronized execution

The RTRM includes core components and plug-in modules

HW support exploiting
Linux frameworks or custom drivers and libraries
Currently supported hardware systems

- Intel/AMD x86 single multi-core processor systems
 - + Multiple GPUs (AMD) through OpenCL runtime
- Intel/AMD x86 multi-processor NUMA systems
- ARM Cortex A9 multi-core CPU based SoC
 - PandaBoard
 - Freescale iMX6 Quad SABRE
- ARM big.LITTLE 8-core (Cortex A7 + Cortex A15)
 - (Samsung Exynos 54xx)
 - Insight Arndale OctaCore
 - ODROID XU-E
 - ODROID XU-3
- MANGO heterogeneous system
 - CPU + Different custom processors
The BarbequeRTRM

Application Execution Model

The application is aware of the amount of resources assigned (#cores, type of processors, etc...)

\textit{BarbequeRTRM} receives feedback about the current application performance
Use case from HARPA project

Beesper system by CAMLIN Italy
- Landslide detection and prediction system

Goal
- The system (solar panel / battery – powered) must remain online for the entire daylight
Use case from HARPA project

Beesper system by CAMLIN Italy
- BarbequeRTRM using TEMPURA policy

<table>
<thead>
<tr>
<th>CPU Thermal threshold</th>
<th>Energy budget variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 95 85 85</td>
<td></td>
</tr>
<tr>
<td>68 65 65 65</td>
<td></td>
</tr>
</tbody>
</table>

e.g., $T=85^\circ$C

HARPA-OS (TEMPURA policy)

Applications Performance requirements
- Application 1
- Application 2
- ...
Use case from HARPA project

Beesper system by CAMLIN Italy
- BarbequeRTRM using TEMPURA policy

Experienced results
- Tests performed on the field
- System uptime guaranteed over both summertime and wintertime
- CPU temperature kept under the safety value
- QoS of the machine learning and computer vision applications guaranteed
Use case from HARPA project

System for disaster management support by IT4Innovations (Ostrava, Czech Republic)

- Rainfall-Runoff modeling with flood prediction
 - Several instances in execution
 - Monitoring of water levels in different areas
Use case from HARPA project

System for disaster management support by IT4Innovations (Ostrava, Czech Republic)
 - Rainfall-Runoff modeling with flood prediction

Goals
 - Adaptive QoS management
 - According to different alert/warning levels
 - Resource consolidation on HPC systems
 - Awareness of performance variability due to HW degradation
Use cases

System for disaster management support by IT4Innovations (Ostrava, Czech Republic)

- BarbequeRTRM using *PerDeTemp* policy
Use cases

System for disaster management support by IT4Innovations (Ostrava, Czech Republic)
- BarbequeRTRM using *PerDeTemp* policy

Experienced results
- QoS guarantee (output prediction carried out according to the deadline)
- Peak power consumption reduction (20-45% saving)
- Cooling costs reduction (10-15% estimated saving)
- Improved HW reliability
 - Expected processors lifetime increased (11-47%)
EU funded project involving BOSP

- [2010 – 2012] **2PARMA**: PARallel PARadigms and Run-time MAnagement techniques for Many-core Architecture
- [2014 – 2016] **HARPA**: Harnessing Performance Variability (http://www.harpa-project.eu/)

BarbequeRTRM Open Source Prj (BOSP)

On going developments

- Extend the BarbequeRTRM with further resource allocation and power management policies
- Programming and resource management support for extremely heterogeneous systems (MANGO) to finalize
- Android support (already available) to develop for distributed mobile systems
- Development for mixed-criticality systems

Links and contacts

- Website: http://bosp.dei.polimi.it/
- Mailing lists:
 - User / News: https://groups.google.com/d/forum/bosp
 - Developers: https://groups.google.com/d/forum/bosp-devel
Exploitable results

Run on the market?
- Open discussion with our Technology Transfer Office
 - How far can arrive a University?
 - Product vs consultancy
 - Legal issues and liability
- Perspective application to the Launchpad program (H2020)
- Expected Business Model
 - Open source (free): still existing, with mechanisms and standard policies
 - Customizations (€): for specific platforms, better tuned ad-hoc policies
Concluding remarks

Power (resources) and thermal management
 cross linked
 mix of proactive and reactive solutions
 different timing scale and level of abstraction

Results are promising
 Cannot make only research forever
 How to find a reasonable technology transfer path?

How to achieve a valuable commercial exploitation of a research output can be a session topic for the next IWES