CRIME: A Collaborative Edge/Cloud
Inference Framework for Recurrent
Neural Networks

Roberta Chiaro, Chen Xie, Daniele Jahier Pagliari, Yukai Chen,

Enrico Macii and Massimo Poncino
Politecnico di Torino, Turin, Italy
Contact: daniele.jahier@polito.it

PSP POLITECNICO
AN
&G 7 | DITORIND
P ZIND




Motivation: ML/DL inference at the edge

e Potential benefits:

1. Lower and more predictable response latency
2. Avoid energy-hungry wireless transfers

3. Improve data privacy



Motivation: ML/DL inference at the edge

Cloud Server

* For energy and latency, edge inference
is not always optimal!

* In particular on GP hardware (MPUs,
MCUs)

* Edge vs cloud: time-varying trade-off

» Speed/energy of edge and cloud compute E E E
* Speed/energy of tx/rx e

Collaborative Inference: dynamically map inference tasks on

a network of collaborating devices



Collaborative Inference for RNNs

* Widely studied for on feed-forward NNs (MLP, CNNs, etc.)

* RNNs introduce new issues:
* Temporal dimension to process sequences (text, speech, time-series, etc.)

 Our work: first collaborative inference framework for RNNs!

* D. Jahier Pagliari et al, Input-dependent edge-cloud mapping of recurrent neural networks
inference, DAC 2020

* D. Jahier Pagliari et al, CRIME: Input-Dependent Collaborative Inference for Recurrent Neural
Networks, IEEE Transactions on Computers (in press)



Background on RNNs

* RNNs = NNs with feedback
* Example: Long-Short Term Memory (LSTM) RNNs

* Inputs at each step t:
* New datum (x,)
* Prev. output (h, = hidden state, c, = cell state)
e At inference time, the NN is actually unrolled n times (n = input length)

he, ——— h, Ih,

h
hg ———\ 04 h, ————\h; A h,
Cul LSTM [c| -2 N, : s,
~ Co| LSTM [c; | ISTM |c,| LSTM |c,| LSTM g,
X2

a) LSTM feedback loop b) Unrolled LSTM for n=4




RNNs: Energy/latency characterization

* Each step involves the same operations
* large MxVs + activation functions
e Similar power and ex. time

* No inter-step parallelism
* Each step requires the previous outputs

* Compute time and energy grow linearly with n!

Ih, Ih, I, h, I

ho ﬂ’ ~ hzvr “ - ~
¢ | IsT™M |, l ISTM |c,| LSTM |c,| LsT™
X4 X5 |x3 |X4

FF




Collaborative RNN Inference: offloading choice

vosd Edge (ARM Cortex)

| —— Cloud (NVIDIA Titan)
‘n
"0 0.06 -
£ r
|_
% 0.08
L

0.0p

{10 20 30 40 50 60 70 |
I Input Length !
Offloading Run on Edge | Run on Cloud
Transmission time (T,,)

Break-even length
changes at runtime



CRIME: fully distributed mapping engine

* Lightweight mapping engine: selects local processing or inference
offloading for a given input

B @~

Input size (n) Context Regression models O %




CRIME: Dynamic Adaptation

* Network conditions (k) and devices load change over time:
* Context information and regression models need to be updated

* Two updating methods:
1. Leverage offloading events: attach time-stamps to inputs/outputs

2. If adevice is not used for some time, use a special “ping” packet

—————

A
-
-
-
-

-

ol T, increase

Ex. time

T, decrease

Ex. time

Ex. time

»

»
L

v

n

n
Detected by time-stamps Detected by “ping”



Results: Setup

* End node: ARM Cortex A-53 + TensorFlow
* Gateway: NVIDIA Jetson TX2 + Tensorflow
e Cloud Server: NVIDIA Titan XP GPU + TensorFlow

* CoVe (B. McCann et al, “Learned in translation: Contextualized word
vectors”)

e 2-layer LSTM
e SNLI and SQUAD datasets

* IMDB (from Keras’ official github repo)
e 1-layer LSTM



Results

* Ex. time reduction vs “edge only” and “cloud only” for a given T,

80 CoVe + SNLI 80

Cloud _ _
§ 60 ...... § 60
o Q —o—  Ex. Time Reduction vs End-node
O [(o]
c 404 c 40 { —m— Ex. Time Reduction vs Cloud

- O (@)
End-node | : & 50l & 20-

o
1

O_

\/

0.000 0.025 0.050 0.075 0.100
Network Latency [s]

* Low-latency = Always offload = 80% saving vs “edge only”
* High-latency = Never offload = 30% saving vs “cloud only”

0.0 0.1 0.2 0.3
Network Latency [s]

* Intermediate =2 20% simultaneous saving vs both solutions



Results: multiple offloading levels

Cloud A
. T, profile from RIPE Atlas database
Gateway @ @ :
'?‘ T,, profile: real Bluetooth Low Energy
:  (BLE) connection
End node

Three-Levels Three-Levels and Two-Servers
Ex. time Ex. time
Test Ex. time reduction [%] incr. [%] Ex. time reduction [%] incr. [%]
vs end-node | vs gateway | vs cloud | vs oracle | vs end-node | vs gateway | vs cloudl | vs cloud2 | vs oracle
SNLI 35.57 5.93 25.33 0.32 35.56 45.38 26.11 25.13 0.72
SQuAD 26.40 1.49 31.92 0.99 23.22 35.12 32.98 29.51 1.18
SNLI200 4.52 20.22 37.48 0.85 4.75 50.87 44.73 37.69 1.15
IMDB -0.46 68.49 59.22 0.46 -0.70 80.45 64.35 59.12 0.71




Cloud

Gateway

End node

Mapping [70]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Input Length

Mapping visualization for SQUAD dataset

m==  End-node

=== Gateway
me= Cloud



Results

* CRIME targeting energy minimization
* an adaptation of the cost function evaluated for mapping choices

CoVe + SNLI

(0]
o
]

()]
(@)
]

Energy Reduction vs Cloud
—4&— Energy Reduction vs Edge

Percentage [%]
N
o

N
(@)
]

o
]

0.0 0.1 0.2 0.3
Network Latency [s]

* Local processing is more convenient for energy



Conclusions

 Collaborative inference can improve execution time and energy of
RNNs

* CRIME can determine the optimal inference device dynamically,
adapting to variations in network status or in the devices loads

* CRIME adapts to every network topology

* CRIME can be extended to other NN architectures



Thank You

Questions?



