
A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

A Pluggable Vector Unit for an Open-
source 64-bit RISC-V Implementation

Vincenzo Maisto
Università degli Studi di Napoli Federico II, Italy, and Hensoldt Cyber GmbH, Germany

Alessandro Cilardo
Università degli Studi di Napoli Federico II, Italy

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Introduces 32 vector registers

 Adds 7 new Control and Status Registers (CSRs)

 Implementation-defined parameters
 VLEN : bits per vector register

 ELEN : maximum width per element

 Run-time hardware reconfiguration
 SEW : selected element width

 VL : number of elements in a vector

 LMUL : number of grouped vector registers

 It derives a Maximum Vector Length
ாே

ௌாௐ

 Vector Length Agnostic programming model

The RISC-V Vector ‘V’ Extension

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Minimize
 source code impact

 micro-architectural impact

 dependencies between the Vector Unit and the rest of the (micro)architecture

 Required features in the base micro-architecture:
 Decode Vector instruction dependencies with the base architecture

 Distinguish among Vector, fp and gp registers

 No register renaming for Vector registers

 Forward scalar operands from/to Vector instructions to/from fp and gp registers

 Introduce new Vector CSRs

 Induce RAW between Vector CSRs updates and Vector instructions

 Update Vector CSR for each retiring Vector instruction

 Simplification, disallow double commit of Vector instructions

 Simplification, disallow CSR operation commit together with Vector instructions

 Allow write back from the Vector Unit

 Stall the Vector Unit in case of Vector Configuration instructions

Extending a Base Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Base RISC-V 64-bit open-
source implementation

 Used by Hensoldt Cyber
GmbH for its products

 Sv39 Virtual Memory

 In-order issue
 Merged with Read-Operands

 Out-of-order write back

 In-order commit

 Originally from ETH Zurich
 Currently maintained by the

Open Hardware Group with the
new name CVA6

The Ariane Core as an industrial use case

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Extension of Ariane’s
Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 It integrates as a regular functional unit
 With some other special ports

 Do not rely on Ariane’s (micro)architectural features

 3 logical stages pipeline

Vector Unit Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Vector Decoder : full decoding of the raw instruction

 Exception : handles the exceptions generated by the Vector Decoder

 Vector Configuration :
 performs the strip-mining

 Stalls the Vector Unit until its instructions retire (or just write-back)

 Vector Dispatcher :
 Sequences Vector instructions into LMUL Packed-SIMD μ-operations

 Dispatches the instruction on the target SIMD functional unit

Sequencer

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Regular structure

 Easily extensible

 SIMD functional units,
composed by:
 Micro-operations queue

 SIMD Read Operands

 SIMD Execute
(Specialized for
functionality)

 SIMD Write back

 Vector Register File

Execution stage

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Functional Units can be integrated in the design without any knowledge
of the micro-architectural details
 E.g., operand preparation, scalar/vector write back, instruction sequencing

 Requirements
 Packed-SIMD capabilities

 Support for variable SEW and VLEN

 Required interface
 Input SIMD and scalar operands

 Input SEW

 Input and output ready/valid signals

 Output SIMD and scalar result

 Output exception signaling

 Some of these ports might also be not implemented

 Low coupling
 FU only interacts only with an opaque wrapper

 All the complexity is hidden

Integration of Functional Units

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Design freedom
 FU can be fully combinatorial, pipelined, have some sequential logic, …

 SIMD functional units can be
 Designed from scratch

 Adapted from legacy components

 Adapted from 3rd party modules

 Together with the base interface, a richer set of input signals is available
for more complex instructions
 μ-operations’ metadata

 All the Vector CSRs status value

Integration of Functional Units

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Accepts write back requests
carrying:
 A scalar result

 An exception

 Controls for the vector CSRs

 Serves requests
 From the Vector Configuration

and Exception module

 From the functional units

 To the write back ports (over an
enable signal)

 A request/grant handshake

 Simple static priority scheme

Vector Write Back

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Multi-banked memory

(4 1RW banks)

 μ-operations are:
 Packed-SIMD

 Out-of-order

 Chained

 Data hazards are solved
at μ-operation level

 Arbitration: two phase
shared locking protocol
at μ-operation level

Vector Register File

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Requirements:
 "Each μ-operation must hold a proper lock on all its vector registers operands before

performing any operation“

 Allow μ-operation chaining

 Chosen base protocol:
 Two-phase shared lock at μ-operation level

 Main rules:
1. after being pushed, a μ-operation can perform reads and writes on its operands being sure

to be holding the proper locks;

2. during operand read all locks for the next μ-operation, read and write, must be acquired;

3. read locks can be released after the read operation is successfully completed and the
requested locks are granted;

4. write locks must be released only after write back.

 There are some corner cases
 e.g., exceptions, first and last μ-operation, mask register

Locking Protocol

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Micro-operations queue must lock the
operand registers only for the first
active μ-op
 Because of rule 1

 As soon as the VRF grants all the locks
the first μ-op can be pushed

 SIMD Read Operands, in parallel:
 Reads its operands

 Locks the operands of the next μ-op

 As soon as both the acks and the
grants arrive, read locks can be
released

 When the result is ready, SIMD Write
Back writes it and the register is
automatically released on ack

 Next μ-op can now be issued

Locking Protocol, scenario

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Future work
 Alternative VRF design

 Flip-flop design with checkpointing techniques for speculative execution
 Simpler allocation logic
 Wider area

 Additional SIMD functional units
 Presented design offers an easily extensible framework

 Memory Architecture for Vector Load/Store Unit
 Heavily impacted by the memory consistency model (still unspecified for

RV V-extension)

 Performance evaluation

 Post-synthesis analysis
 Only preliminary results so far

