UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

A Pluggable Vector Unit for an Open-
source 64-bit RISC-V Implementation

Vincenzo Maisto
Universita degli Studi di Napoli Federico Il, Italy, and Hensoldt Cyber GmbH, Germany

Alessandro Cilardo
Universita degli Studi di Napoli Federico I, Italy

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

The RISC-V Vector ‘V’ Extension

» Introduces 32 vector registers
» Adds 7 new Control and Status Registers (CSRs)
» Implementation-defined parameters

» VLEN : bits per vector register
» ELEN : maximum width per element

» Run-time hardware reconfiguration
» SEW : selected element width
> VL : number of elements in a vector
» LMUL : number of grouped vector registers

» It derives a Maximum Vector Length MVL = LMUL%
» Vector Length Agnostic programming model
VLEN
g v4 0 1
N =) LMUL

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Extending a Base Micro-Architecture
» Minimize
» source code impact

» micro-architectural impact
» dependencies between the Vector Unit and the rest of the (micro)architecture

» Required features in the base micro-architecture:
» Decode Vector instruction dependencies with the base architecture
Distinguish among Vector, fp and gp registers
No register renaming for Vector registers
Forward scalar operands from/to Vector instructions to/from fp and gp registers
Introduce new Vector CSRs
Induce RAW between Vector CSRs updates and Vector instructions
Update Vector CSR for each retiring Vector instruction
Simplification, disallow double commit of Vector instructions
Simplification, disallow CSR operation commit together with Vector instructions
Allow write back from the Vector Unit
Stall the Vector Unit in case of Vector Configuration instructions

YV V V VYV VYV VY VY

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Y VYV

YV V V

The Ariane Core as an industrial use case

Base RISC-V 64-bit open-
source implementation

Used by Hensoldt Cyber
GmbH for its products

Sv39 Virtual Memory

In-order issue

» Merged with Read-Operands
Out-of-order write back
In-order commit

Originally from ETH Zurich

» Currently maintained by the
Open Hardware Group with the
new name CVA6

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

PC-
Generation

Y

Instruction
Fetch

Y

Instruction
Decode

Issue

Y

Commit

A

Execution

¥

CSRs

A

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Front-end

Extension of Ariane’s
Micro-Architecture

extended Instruction Decode

F Decoder

Wrtite Back

extended CSRs

NOP

Issue request
Scoreboard / Read Operand/ __ ., > Execution
ROB Issue -

CSRs

v

|
’—Data Forward—T

Forward request:

Commit request Commit ack Commit data

Commit

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Vector Unit Micro-Architecture

» It integrates as a regular functional unit
» With some other special ports

» Do not rely on Ariane’s (micro)architectural features
» 3 logical stages pipeline

- Vector Unit
ReadOperands ready
cme. commit instr_id -
ammmit commit_ack Vector Write
Sequencer
From | Back
extended Vector CSRSQ 7
CSR
scalar operand a
From scalar operand b
ReadOperands trans_id

issue_valid
undecoded_instr

—— Execution stage —

scalar result

exception
trans_id
Vector CSRs controls

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

— To Write Back

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Sequencer

» Vector Decoder : full decoding of the raw instruction

» Exception : handles the exceptions generated by the Vector Decoder

» Vector Configuration :

» performs the strip-mining

» Stalls the Vector Unit until its instructions retire (or just write-back)
» Vector Dispatcher :

» Sequences Vector instructions into LMUL Packed-SIMD p-operations
» Dispatches the instruction on the target SIMD functional unit

Sequencer

To

ReadOperands Teady

From committing trans_id
Commit commit_ack Vector

>

Configuration scalar result

scalar operand a

scalar operand b
Erom — trans_id : ; 7 z
ReadOperands a6 valid decoded instruction —» EXception i exception
undecoded_instr

From
extended Vector CSRs %_‘%uop queue——
CSR

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Execution stage

» Regqular structure

» Easily extensible

» SIMD functional units,
composed by:

» Micro-operations queue
» SIMD Read Operands

» SIMD Execute
(Specialized for
functionality)

» SIMD Write back

» Vector Register File

Vector
Register
File

uop queue

— I

uop queue

R —

Execution stage

——SIMD SIMD SIMD

]

RO EX WB

IMD SIMD SIMD

RO EX WB

.........

vscalar results >

1 -
, exceptions 1

Vector Write Back

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base

Corso di Laurea Magistrale in Ingegneria Informatica

>
>

» Required interface

>

YV V V V

>

Integration of Functional Units

» Functional Units can be integrated in the design without any knowledge
of the micro-architectural details
> E.qg., operand preparation, scalar/vector write back, instruction sequencing

» Requirements

Packed-SIMD capabilities
Support for variable SEW and VLEN

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Input SIMD and scalar operands
Input SEW

Input and output ready/valid signals > S.';T(D
Output SIMD and scalar result
Output exception signaling
Some of these ports might also be not implemented

» Low coupling

>
>

FU only interacts only with an opaque wrapper
All the complexity is hidden

Y

Opaque wrapper

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Integration of Functional Units

» Design freedom

» FU can be fully combinatorial, pipelined, have some sequential logic, ...
» SIMD functional units can be

» Designed from scratch

» Adapted from legacy components
> Adapted from 3 party modules

Opaque wrapper

A 4

Legacy/3rd
party

» Together with the base interface, a richer set of input signals is available
for more complex instructions

» M-operations’ metadata
> All the Vector CSRs status value

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Vector Write Back

» Accepts write back requests
carrying:
» A scalar result
» An exception

> Controls for the vector CSRs Vector Unit
—“; % Vector Write Back " " scalarresult
» Serves requests sequencer [. L eepien L
)) i | Vector CSRs controls |
» From the Vector Configuration h """"" P
. exception
and Exceptlon mOdUIe L) — Vectortéasr;:;s_tiontrols
» From the functional units irF .
> To the write back ports (over an Execionsine 1] *
enable signal) >

» A request/grant handshake

» Simple static priority scheme

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Vector Register File
» Multi-banked memory

(4 1RW banks)

Vector Register File

. RO bus SRAM banks WB Bus
» J-operations are:) ! —.)
» Packed-SIMD .] — :
» Out-of-order . " — .
> Chained — D
< 1RW |« <
> Data hazards are solved =

VRF Allocator

at y-operation level

A VLEN s 00 T Request Bus 4 VLEN

» Arbitration: two phase
shared locking protocol
at p-operation level o queue

From Dispatcher —)ﬂ]} Ll =l >SIMD i » To Write Back

Y
A 4

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base

Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Locking Protocol

» Requirements:

» "Each u-operation must hold a proper lock on all its vector registers operands before
performing any operation®

» Allow y-operation chaining
» Chosen base protocol:

» Two-phase shared lock at p-operation level
» Main rules:

1. after being pushed, a p-operation can perform reads and writes on its operands being sure
to be holding the proper locks;

2. during operand read all locks for the next y-operation, read and write, must be acquired;

3. read locks can be released after the read operation is successfully completed and the
requested locks are granted;

4. write locks must be released only after write back.

» There are some corner cases
» e.g., exceptions, first and last y-operation, mask register

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Locking Protocol, scenario

Micro-operations queue must lock the

operand registers only for the first VRF
active y-op § g
> Because of rule 1 locki
As soon as the VRF grants all the locks i
the first y-op can be pushed e |
SIMD Read Operands, in parallel: P —

» Reads its operands
> Locks the operands of the next y-op
As soon as both the acks and the

grants arrive, read locks can be
released § ;—read lock release i—-bé

When the result is ready, SIMD Write

lock i+1

par/: ack i

grant i+1

write i

Back writes it and the register is
automatically released on ack

———
write lock release i

ack i

Next y-op can now be issued

push uop i+1—>E

UNIVERSITA oecu STUDI o
NAPOLI FEDERICOI

Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica A pluggable Vector Unit for an open-source 64-bit RISC-V implementation

Future work
» Alternative VRF design

> Flip-flop design with checkpointing techniques for speculative execution
» Simpler allocation logic

> Wider area

> Additional SIMD functional units

» Presented design offers an easily extensible framework

» Memory Architecture for Vector Load/Store Unit

» Heavily impacted by the memory consistency model (still unspecified for
RV V-extension)

> Performance evaluation

» Post-synthesis analysis
» Only preliminary results so far

