
A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

A Pluggable Vector Unit for an Open-
source 64-bit RISC-V Implementation

Vincenzo Maisto
Università degli Studi di Napoli Federico II, Italy, and Hensoldt Cyber GmbH, Germany

Alessandro Cilardo
Università degli Studi di Napoli Federico II, Italy

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Introduces 32 vector registers

 Adds 7 new Control and Status Registers (CSRs)

 Implementation-defined parameters
 VLEN : bits per vector register

 ELEN : maximum width per element

 Run-time hardware reconfiguration
 SEW : selected element width

 VL : number of elements in a vector

 LMUL : number of grouped vector registers

 It derives a Maximum Vector Length
௏௅ாே

ௌாௐ

 Vector Length Agnostic programming model

The RISC-V Vector ‘V’ Extension

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Minimize
 source code impact

 micro-architectural impact

 dependencies between the Vector Unit and the rest of the (micro)architecture

 Required features in the base micro-architecture:
 Decode Vector instruction dependencies with the base architecture

 Distinguish among Vector, fp and gp registers

 No register renaming for Vector registers

 Forward scalar operands from/to Vector instructions to/from fp and gp registers

 Introduce new Vector CSRs

 Induce RAW between Vector CSRs updates and Vector instructions

 Update Vector CSR for each retiring Vector instruction

 Simplification, disallow double commit of Vector instructions

 Simplification, disallow CSR operation commit together with Vector instructions

 Allow write back from the Vector Unit

 Stall the Vector Unit in case of Vector Configuration instructions

Extending a Base Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Base RISC-V 64-bit open-
source implementation

 Used by Hensoldt Cyber
GmbH for its products

 Sv39 Virtual Memory

 In-order issue
 Merged with Read-Operands

 Out-of-order write back

 In-order commit

 Originally from ETH Zurich
 Currently maintained by the

Open Hardware Group with the
new name CVA6

The Ariane Core as an industrial use case

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Extension of Ariane’s
Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 It integrates as a regular functional unit
 With some other special ports

 Do not rely on Ariane’s (micro)architectural features

 3 logical stages pipeline

Vector Unit Micro-Architecture

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Vector Decoder : full decoding of the raw instruction

 Exception : handles the exceptions generated by the Vector Decoder

 Vector Configuration :
 performs the strip-mining

 Stalls the Vector Unit until its instructions retire (or just write-back)

 Vector Dispatcher :
 Sequences Vector instructions into LMUL Packed-SIMD μ-operations

 Dispatches the instruction on the target SIMD functional unit

Sequencer

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Regular structure

 Easily extensible

 SIMD functional units,
composed by:
 Micro-operations queue

 SIMD Read Operands

 SIMD Execute
(Specialized for
functionality)

 SIMD Write back

 Vector Register File

Execution stage

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Functional Units can be integrated in the design without any knowledge
of the micro-architectural details
 E.g., operand preparation, scalar/vector write back, instruction sequencing

 Requirements
 Packed-SIMD capabilities

 Support for variable SEW and VLEN

 Required interface
 Input SIMD and scalar operands

 Input SEW

 Input and output ready/valid signals

 Output SIMD and scalar result

 Output exception signaling

 Some of these ports might also be not implemented

 Low coupling
 FU only interacts only with an opaque wrapper

 All the complexity is hidden

Integration of Functional Units

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Design freedom
 FU can be fully combinatorial, pipelined, have some sequential logic, …

 SIMD functional units can be
 Designed from scratch

 Adapted from legacy components

 Adapted from 3rd party modules

 Together with the base interface, a richer set of input signals is available
for more complex instructions
 μ-operations’ metadata

 All the Vector CSRs status value

Integration of Functional Units

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Accepts write back requests
carrying:
 A scalar result

 An exception

 Controls for the vector CSRs

 Serves requests
 From the Vector Configuration

and Exception module

 From the functional units

 To the write back ports (over an
enable signal)

 A request/grant handshake

 Simple static priority scheme

Vector Write Back

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Multi-banked memory

(4 1RW banks)

 μ-operations are:
 Packed-SIMD

 Out-of-order

 Chained

 Data hazards are solved
at μ-operation level

 Arbitration: two phase
shared locking protocol
at μ-operation level

Vector Register File

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Requirements:
 "Each μ-operation must hold a proper lock on all its vector registers operands before

performing any operation“

 Allow μ-operation chaining

 Chosen base protocol:
 Two-phase shared lock at μ-operation level

 Main rules:
1. after being pushed, a μ-operation can perform reads and writes on its operands being sure

to be holding the proper locks;

2. during operand read all locks for the next μ-operation, read and write, must be acquired;

3. read locks can be released after the read operation is successfully completed and the
requested locks are granted;

4. write locks must be released only after write back.

 There are some corner cases
 e.g., exceptions, first and last μ-operation, mask register

Locking Protocol

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

 Micro-operations queue must lock the
operand registers only for the first
active μ-op
 Because of rule 1

 As soon as the VRF grants all the locks
the first μ-op can be pushed

 SIMD Read Operands, in parallel:
 Reads its operands

 Locks the operands of the next μ-op

 As soon as both the acks and the
grants arrive, read locks can be
released

 When the result is ready, SIMD Write
Back writes it and the register is
automatically released on ack

 Next μ-op can now be issued

Locking Protocol, scenario

A pluggable Vector Unit for an open-source 64-bit RISC-V implementation
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Future work
 Alternative VRF design

 Flip-flop design with checkpointing techniques for speculative execution
 Simpler allocation logic
 Wider area

 Additional SIMD functional units
 Presented design offers an easily extensible framework

 Memory Architecture for Vector Load/Store Unit
 Heavily impacted by the memory consistency model (still unspecified for

RV V-extension)

 Performance evaluation

 Post-synthesis analysis
 Only preliminary results so far

