
iwes 2020
5th italian woRKshop on embedded systems

8/9 febRuaRy 2020

Enforcing Control-flow integrity in
Virtualized environments on ARM platforms

Gabriele Serra, Pietro Fara, Giorgiomaria Cicero, Alessandro Biondi
Scuola Superiore Sant’Anna
name.surname@santannapisa.it

Abstract

Virtualization is becoming a key technology for embedded systems de-
signs, especially for applications with mixed-criticality and security levels.
Consequently, safety-critical OSes more susceptible to the most common
malicious cyber-attacks such as code-reuse attack (CRA) or return-oriented
programming (ROP). The control-flow integrity (CFI) technique is one of
the most efficient to counteract this kind of attacks. CFI is undoubtedly a
powerful technique but scarcely applicable in real cases, especially for the
overhead introduced to ensure complete graph enforcement. To make some
CFI techniques implementable in practical applications, manufacturers have
started to offer hardware supports. Our work focuses on exploiting the
hardware mechanisms offered by ARM processors called pointer authenti-
cation and branch-target identification to realize a robust CFI enforcement
providing a hypervisor-centric attack-detection and recovery strategy. Im-
provement of keys management can be realized with little effort exploiting
the capabilities of the virtualization extension offered by ARM, such as the
TrustZone. Conversely, PA attack-detection is challenging to recognize due
to architectural limitations; the forthcoming introduction of FPAC extension
in version 8.6-A of the ARM architecture solves the problem at the root,
allowing proper attack detection/recovery strategies. Furthermore, the lack
of support of security mechanisms for legacy architecture is an issue when
dealing with portable software. We counteracted all these issues taking
advantage of a type-1 hypervisor named Clare developed at our laboratory.
Furthermore, we realized an emulation of the PA mechanism through both a
full-software approach and a hybrid software-hardware approach employing
an FPGA. Firsts results show an overhead limited and less than 10%. Our
current investigations focus on improving the protection model to reduce
the total overhead introduced by the mechanisms, for instance, protecting
only vulnerable sections of code and limiting the usage to a restricted set
of functions.


