
ENFORCING CONTROL-FLOW 

INTEGRITY IN VIRTUALIZED 

ENVIRONMENTS ON ARM PLATFORMS

The 5th Italian Workshop on Embedded Systems
February 9, 2021

Gabriele Serra
Pietro Fara

Giorgiomaria Cicero

Alessandro Biondi



MOTIVATION AND CONTEXT

Can we really trust our embedded devices?
Imagine if this will happen on our cars or trains.

2



MOTIVATION AND CONTEXT

3

Embedded systems
• OSes are written in C/C++
• Exposed to public access



MOTIVATION AND CONTEXT

4

Embedded systems
• OSes are written in C/C++
• Exposed to public access

OS Service

Lib C

Attacked
program

1

2

3

Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming



MOTIVATION AND CONTEXT

5

Embedded systems
• OSes are written in C/C++
• Exposed to public access

Mitigation technique
• Address space layout randomization (ASLR)
• Integrity check of control flow (CFI)

Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming



INTRODUCTION

6

CFI basic idea:
• build a Control Flow Graph 

(CFG) of the program
• CFG defines the legal 

execution



INTRODUCTION

7

CFI basic idea:
• build a Control Flow Graph 

(CFG) of the program
• CFG defines the legal 

execution

void foo() { ... }

void main() {

... 

obj->method = foo;

obj->method();

...

}

main

foo

ldr r0, method

blr r0

ret



INTRODUCTION

8

CFI basic idea:
• build a Control Flow Graph 

(CFG) of the program
• CFG defines the legal 

execution

void foo() { ... }

void main() {

... 

obj->method = foo;

obj->method();

...

}

main

foo

ldr r0, method

blr r0

ret

ARM introduced hw supports:
• Branch Targets Identification (BTI)

• Forward branch protection
• Pointer Authentication Code (PAC)

• Backward branch protection



BACKGROUND

9

Pointers in AArch64:
• Address represented on [0:VA_SIZE]
• Typically VA_SIZE = 48
• Empty [VA_SIZE:54] and [56:63]



BACKGROUND

10

AArch64 Pointer Authentication Codes (PAC):
• Hardware-based CFI
• Leverages empty space on 64-bit virtual addresses
• Append a Message Authentication Code (MAC)



BACKGROUND

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation 

defined



BACKGROUND

12

Pointer

HContext

Key

PAC | Pointer

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation 

defined

PAC:



BACKGROUND

13

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation 

defined

PAC | Pointer

H|=Context

Key

Pointer

1 | Pointer

AUTH:



BACKGROUND

14

Pointer authentication ISSUES

• Weakness against signing gadget



BACKGROUND

15

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak



CONTRIBUTION

16

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6



CONTRIBUTION

17

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available



CONTRIBUTION

18

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available

Leverage on 
virtualization to 
counteract these 
issues!



PROPOSED APPROACH

19

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2



CLARE IN A NUTSHELL

20Check it out @ clare.santannapisa.it

https://clare.santannapisa.it/


PROPOSED APPROACH

21

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR TRAP 

ACCESS TO KEY 

REGISTERS

1

VIRTUALIZE 

ACCESS TO 

KEY

2



PROPOSED APPROACH

22

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR TRAP 

ACCESS TO KEY 

REGISTERS

Secure Monitor EL3

Trusted
OS

1

3

2

VIRTUALIZE 

ACCESS TO 

KEY IN EL1S



PROPOSED APPROACH

23

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR CAN 

EMULATE 

INSTRUCTIONS

1



PROPOSED APPROACH

24

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

1. PA can be HW accelerated
2. Clare can detect attacks

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR CAN 

EMULATE 

INSTRUCTIONS

1

HW
Accelerator

2



CONCLUSIONS & FUTURE WORKS

Advances in embedded system connectivity 
and technologies need to be followed by 
corresponding advancements in associated 
security protection!

25

Future directions

o Measure aggregate overhead when protecting 1 domain out of N

o Apply PAC in selective way (only “more at risk” processes)

o Simplify access to PAC features

o Fully integrate the stack for production in CLARE hypervisor



26

THANK YOU
QUESTIONS?

gabriele.serra@santannapisa.it
gabrieleserra.ml


