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MOTIVATION AND CONTEXT

Can we really trust our embedded devices?
Imagine if this will happen on our cars or trains.
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Embedded systems
• OSes are written in C/C++
• Exposed to public access
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Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming
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Embedded systems
• OSes are written in C/C++
• Exposed to public access

Mitigation technique
• Address space layout randomization (ASLR)
• Integrity check of control flow (CFI)

Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming
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(CFG) of the program
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CFI basic idea:
• build a Control Flow Graph 

(CFG) of the program
• CFG defines the legal 

execution

void foo() { ... }

void main() {

... 

obj->method = foo;

obj->method();

...

}

main

foo

ldr r0, method

blr r0

ret
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CFI basic idea:
• build a Control Flow Graph 

(CFG) of the program
• CFG defines the legal 

execution

void foo() { ... }

void main() {

... 

obj->method = foo;

obj->method();

...

}

main

foo

ldr r0, method

blr r0

ret

ARM introduced hw supports:
• Branch Targets Identification (BTI)

• Forward branch protection
• Pointer Authentication Code (PAC)

• Backward branch protection
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Pointers in AArch64:
• Address represented on [0:VA_SIZE]
• Typically VA_SIZE = 48
• Empty [VA_SIZE:54] and [56:63]



BACKGROUND

10

AArch64 Pointer Authentication Codes (PAC):
• Hardware-based CFI
• Leverages empty space on 64-bit virtual addresses
• Append a Message Authentication Code (MAC)



BACKGROUND

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation 

defined
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Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation 

defined

PAC | Pointer

H|=Context

Key

Pointer

1 | Pointer

AUTH:
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• Weakness against kernel attackers
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• Key memory leak
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• Attack cannot be detected
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• Will be fixed with FPAC in ARM v8.6
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Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available

Leverage on 
virtualization to 
counteract these 
issues!
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Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2



CLARE IN A NUTSHELL

20Check it out @ clare.santannapisa.it

https://clare.santannapisa.it/
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Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel
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HYPERVISOR TRAP 

ACCESS TO KEY 
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Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR TRAP 

ACCESS TO KEY 

REGISTERS

Secure Monitor EL3

Trusted
OS

1
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Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisor

Kernel
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Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

1. PA can be HW accelerated
2. Clare can detect attacks

Clare hypervisor

Kernel

App App EL0

EL1

EL2

HYPERVISOR CAN 

EMULATE 

INSTRUCTIONS

1

HW
Accelerator
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CONCLUSIONS & FUTURE WORKS

Advances in embedded system connectivity 
and technologies need to be followed by 
corresponding advancements in associated 
security protection!
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Future directions

o Measure aggregate overhead when protecting 1 domain out of N

o Apply PAC in selective way (only “more at risk” processes)

o Simplify access to PAC features

o Fully integrate the stack for production in CLARE hypervisor
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THANK YOU
QUESTIONS?

gabriele.serra@santannapisa.it
gabrieleserra.ml


