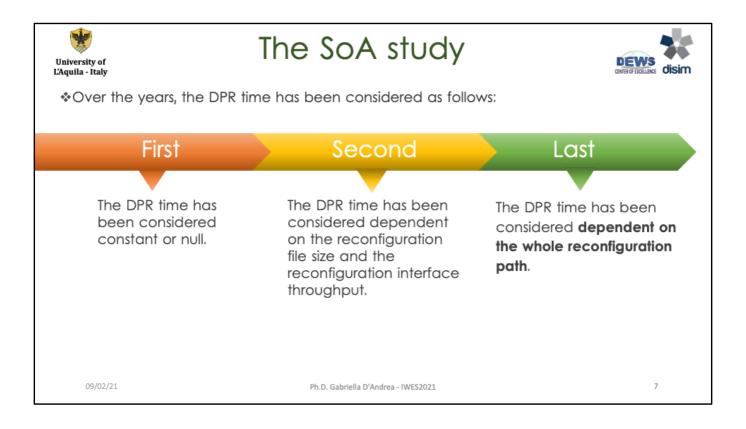
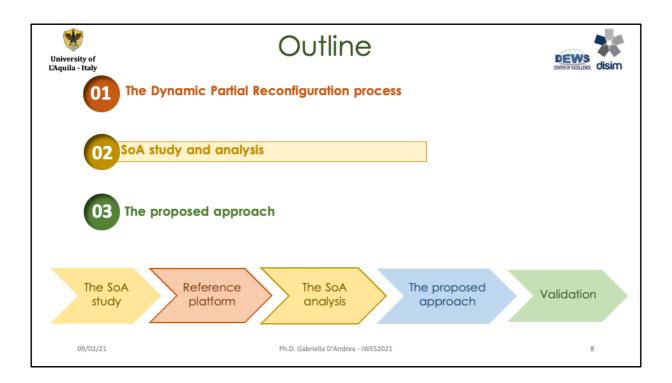
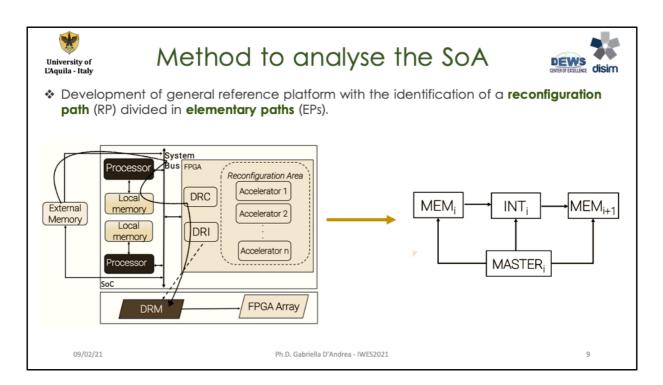
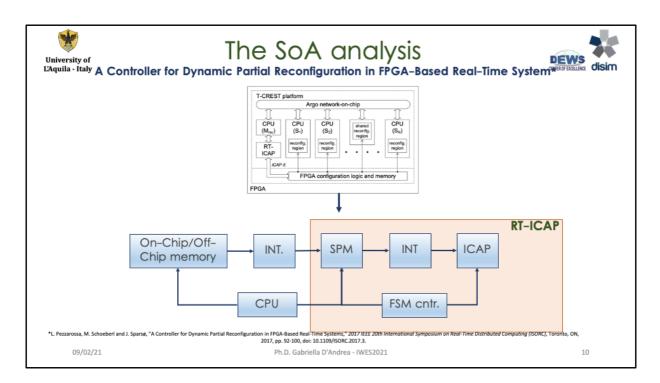

The DPR process requires a certain amount of time to transfer the reconfiguration file, commonly called bitstream (BS), from the external memory to the FPGA reconfiguration area (i.e., FPGA reconfiguration memory).



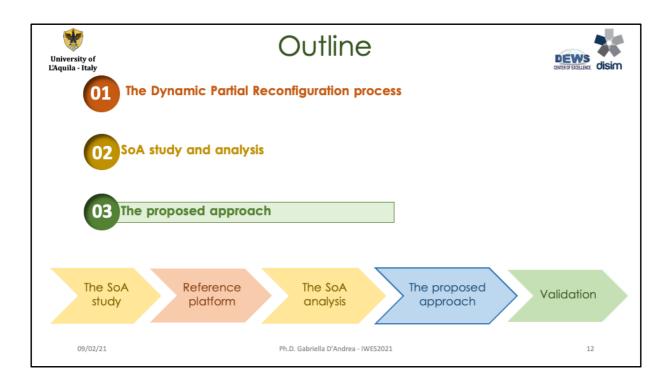

At this time our question is: are there general approaches to calculate the DPR time before the start of the reconfiguration process?

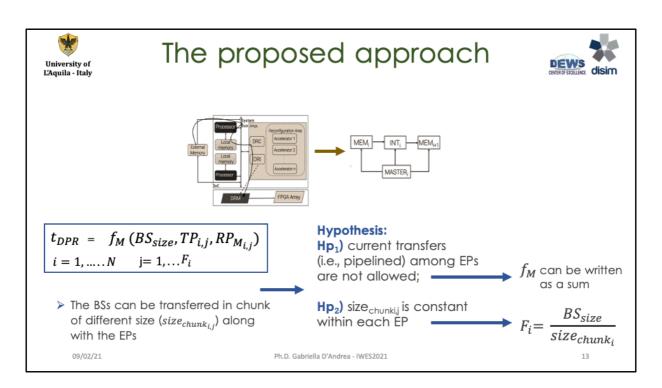

And, if such approaches exist, are they suitable for hard real-time systems? Are these approaches based on a static timing analysis (i.e., an analysis that can be performed at design time)? Are these approaches target-independent, hence potentially applicable to all DPR compliant platforms? And finally, do these approaches take into account all the elements involved in the DPR process?



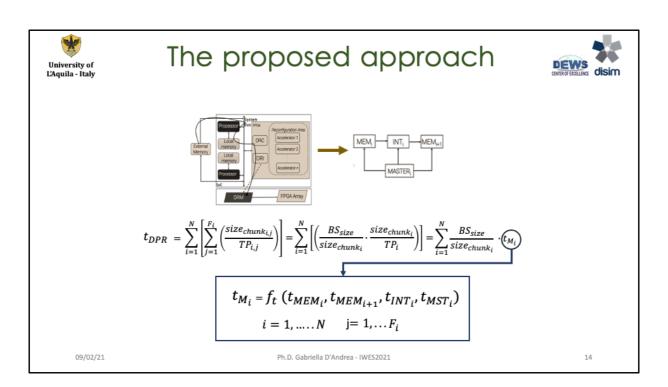
Our DPR time SoA study highlights that does not exist an approach that, considering the whole reconfiguration path (path used to transfer the BS from the external memory to the FPGA reconfiguration memory), allows to calculate in advance the DPR time and it is potentially applicable to all DPR compliant platforms. Hence at this point, we have started working on the reconfiguration path.

We have developed a general reference platform for DPR identifying the reconfiguration path (indicated in the figure with the black arrow) and dividing it into the elementary path (depicted on the right side of the figure).

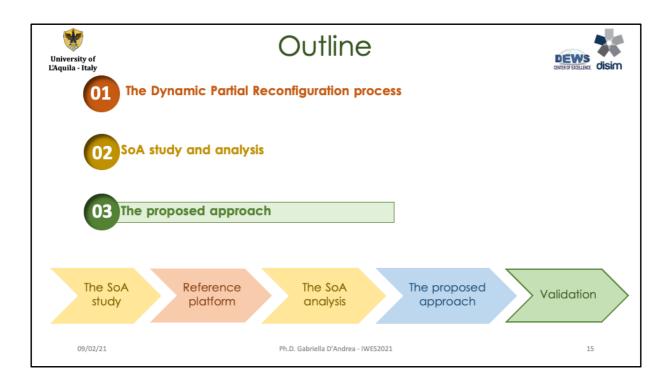


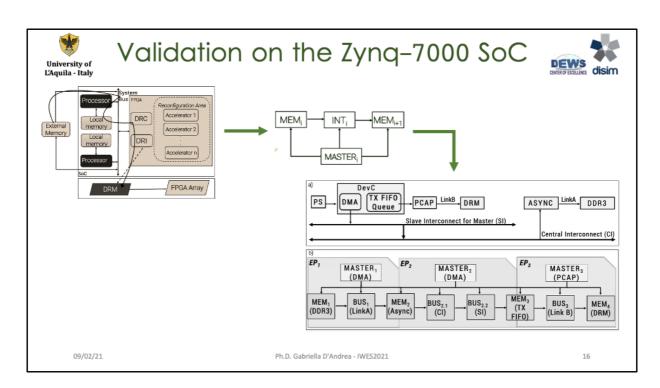

By instantiating the general DPR compliant platform into the works presented in the DPR time SoA we have studied their method to calculate the reconfiguration time.

*	The SoA analys DPR time that,			ck of an ap	proach to k	bound the v	contexoFEXELLENCE
	 is target ind 	depende	ent;				
	 considers a 	ll the RP	elements;				
	• provides a	worst-ca	ise DPR time	e bound			
		_		dware reso			
	Approach	Target indep.	All RP elements	WCDPRT	FF	LUT	BRAM
	CoRQ	no	yes	yes	552	631	97
	RT-ICAP	no	yes	yes	101	245	Encoded Bitstream size
	ZyCAP	no	no	no	806	620	0


Some of the works that we have studied are reported in the table Hardware Resources.

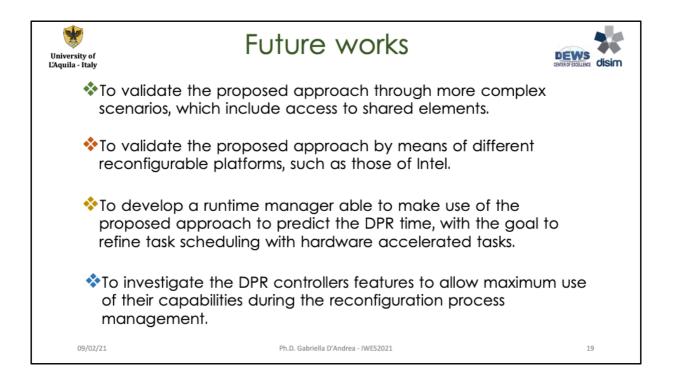
In general most of the studied works require the usage of custom DPR controllers that make them target-dependent increasing both the area occupied in the FPGA and the power consumed.





Considering the general DPR compliant platform and the elementary path the DPR time (t_{DPR}) can be calculated with the formula on the left side of the slides; where N is the number of elementary paths (EPs) that compose the reconfiguration path and F_i is the number of chunks to be transferred within the i-th EP. In the formula, t_{DPR} is a function (f_M) of : (i) the BS_{size},(ii) the TP_{i,j}, that represents, \forall EP_i, the throughput associated to the transfer of each chunk_{i,j} within EP_i, and (iii) RP_{Mi,j}, that represents the RP policy adopted to manage the transfer of chunks among adjacent EPs.

Since at design-time we know both the BS size and the chunk size we can calculate the reconfiguration time considering the features of each component of each elementary path. For example, we can consider the size of the memories, or the interconnections frequencies, or the master command queue depth.



Using the documentations of the Zynq-7000 SoC we have found three elementary paths among which the BS is transferred.

University of ZAquila - Italy	Validatio	n on the	e Zyn	q-7000		
a) DevC DMA TX FIF(Queue	Slave Interconnect for Master (SI)	IC LinkA DDR3	$t_{DPR}^{CAL} =$	$\sum_{i=1}^{N} \frac{BS_{size}}{size_{chunk_i}} \cdot $	$t_{M_i} = \sum_{i=1}^{3} \left(\frac{BS_s}{size_c} \right)$	$\frac{dize}{dunk_i} \cdot t_{M_i}$
	$\begin{array}{c} EP_2 \\ (DMA) \\ HEM_2 \\ HEM_2 \\ HEM_2 \\ (C1) \\ HEM_2 \\ (S1) \\ HEM_2 \\ HEM_2 \\ (S1) \\ HEM_2 \\ HEM$	MASTER ₃ (PCAP) 1 BUS ₃ (Link B) (DRM)	* ≈	$BS_{size} \left({freq_2} \right)$	$\frac{1}{beat_{size_2}} + \frac{1}{BW_{PQ}}$	CAP)
Results for B	s _{size} = 857740 Bytes ar	,	$t_{DPR}^{(acc\%)}$ ob $t_{DPR}^{CAL} - t_{DPR}^{ACT}$ t_{DPR}^{ACT}	0	e following form	ula:
	$beat_{size_2}$ (bytes)	1 (worst case)	2	3	4	
	$t_{DPR}^{CAL} - t_{DPR}^{ACT}$ (ms)	$t_{DPR}^{CAL} - t_{DPR}^{ACT}$ (ms) 2		-2.3	-2.9	
	acc%	30.3	18.1	34.8	43.9	
				tems," in IEEE Embedded Syste		

In this work, considering having exclusive access to the reconfiguration path (i.e., one actor that accesses the memories and the shared buses) we have calculated the DPR time. More details about that approach and the DPR time calculation can be found in our work titled Dynamic Partial Reconfiguration Profitability for Real-Time Systems (G. Valente, T. Di Mascio, G. D'Andrea and L. Pomante, "Dynamic Partial Reconfiguration Profitability for Real-Time Systems Letters, doi: 10.1109/LES.2020.3004302).

 The proposed is potentia the availal 						CENTER OF EXCELLENCE
	ole DPR-	compliant		e reconfigur	able paths	in any of
 allows cald 	culating	a WCDPRT	suitable in t	he hard rea	al-time syste	ems domain.
		Hard	ware resour	ces		
Approach	Target indep.	All RP elements	WCDPRT	FF	LUT	BRAM
CoRQ	no	yes	yes	552	631	97
RT-ICAP	no	yes	yes	101	245	Encoded Bitstream size
ZyCAP	no	no	no	806	620	0
The proposed approach	Yes	Yes	Yes	0	0	0
	Approach CoRQ RT-ICAP ZyCAP The proposed	ApproachTarget indep.CoRQnoRT-ICAPnoZyCAPnoThe proposed approachYes	ApproachTarget indep.All RP elementsCoRQnoyesRT-ICAPnoyesZyCAPnonoThe proposed approachYesYes	ApproachTarget indep.All RP elementsWCDPRTCoRQnoyesyesRT-ICAPnoyesyesZyCAPnononoThe proposed approachYesYesYes	Hardware resourcesApproachTarget indep.All RP elementsWCDPRTFFCoRQnoyesyes552RT-ICAPnoyesyes101ZyCAPnonono806The proposed approachYesYesYes0	Hardware resourcesApproachTarget indep.All RP elementsWCDPRTFFLUTCoRQnoyesyes552631RT-ICAPnoyesyes101245ZyCAPnonono806620The proposed approachYesYesYesYes0

