
IWES 2019 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Roberto Giorgio Rizzo
EDA Group - PoliTo

HW/SW Inference-time Optimizations
for Reliable Embedded ConvNets

IWES 2021
6th Italian Workshop on Embedded Systems

Rome, 9-10 December 2021

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

• Introduction
• ConvNets in embedded real-life scenarios: Quality and Performance

challenges

• Inference-time optimizations for reliable embedded ConvNets
• AdapTTA: Adaptive Test-Time Augmentation

• Improve Quality (i.e., Accuracy) of embedded ConvNets in real-life use
• TVFS: Topology Voltage Frequency Scaling

• Thermal-aware performance management technique for continuous inference of
embedded ConvNets on low-power CPUs, under latency constraints

Outline

2

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

ConvNets in embedded real-life scenarios
• ConvNets state-of-the-arts for several tasks and apps in Computer Vision (also NLP, Time-Series)

Introduction

3

Training on the cloud Inference on the Edge

Quality & Performance Challenges

on the field -> where the data is collected

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

ConvNets in embedded real-life scenario: Quality challenges
• Input patterns collected in harsh environment might differ from those used at training time:

• Size & orientation of the objects
• Background
• Lights conditions & contrast

• Model generalization capability at training-time w/ data augmentation is not always sufficient
• No ConvNet fine-tuning (i.e., re-training) w/ data collected on the field

AdapTTA: Adaptive Test-Time Augmentation

4

Training Data Inference real-life collected Data

Complex background, different orientationNo background, vertical orientation

Misled Prediction
vs.

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Test-Time Augmentation (TTA): main features
• Improve accuracy with multiple inferences on a set of N input images altered through

transforms: Geometric, Luminosity, Contrast, Blur, Channel shuffle, etc.
• Final prediction through a consensus of the aggregated predictions

AdapTTA: Adaptive Test-Time Augmentation AdapTTA: Adaptive Test-Time Augmentation for
Reliable Embedded ConvNets

Luca Mocerino, Roberto G. Rizzo, Valentino Peluso, Andrea Calimera, Enrico Macii
Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
{luca.mocerino, robertogiorgio.rizzo, valentino.peluso, andrea.calimera, enrico.macii}@polito.it

Abstract—Convolutional Neural Networks (ConvNets) are
trained offline using the few available data and may therefore
suffer from substantial accuracy loss when ported on the field,
where unseen input patterns received under unpredictable exter-
nal conditions can mislead the model. Test-Time Augmentation
(TTA) techniques aim to alleviate such common side effect
at inference-time, first running multiple feed-forward passes
on a set of altered versions of the same input sample, and
then computing the main outcome through a consensus of the
aggregated predictions. Unfortunately, the implementation of
TTA on embedded CPUs introduces latency penalties that limit
its adoption on edge applications. To tackle this issue, we propose
AdapTTA, an adaptive implementation of TTA that controls the
number of feed-forward passes dynamically, depending on the
complexity of the input. Experimental results on state-of-the-
art ConvNets for image classification deployed on a commercial
ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable
latency savings, from 1.40⇥ to 2.21⇥, and hence a higher frame
rate compared to static TTA, still preserving the same accuracy
gain.

I. INTRODUCTION & MOTIVATIONS

Learning pattern recognition models with good general-
ization capability is an extremely challenging task, as the
training data often represents a tiny fraction of all the possible
patterns. This is a main source of concern in high-dimensional
problems, like those in computer vision, e.g., image classifi-
cation, where covering the large variability across different
samples gets unfeasible. In this regard, the advancements in
deep learning, Convolutional Neural Networks (ConvNets)
in particular, enabled unprecedented results [1]. Nonetheless,
state-of-the-art ConvNets still suffer from accuracy drop when
ported in real-life scenarios and operated on input patterns
that differ substantially from those used at training time. For
instance, the most common sources of misprediction are the
discrepancy in size and orientation of the objects caught in the
image [2], as well as different light conditions or contrast.

Several techniques proposed in the recent literature aim
to improve model generalization operating both at training
time [3], [4] and inference time [5], [6]. Among them, Test-
Time Augmentation (TTA) is a valuable option for ConvNets
hosted in the cloud and operated for visual tasks like image
classification [7], [8], [9]. It is a simple yet efficient strategy
that involves the aggregation of partial predictions over a set
of transformed versions of the same input image. When imple-
mented on high-performance architecture, the cost of multiple
feed-forward passes is compensated through input batching,

Table I: Inference latency (ms) of state-of-the-art ConvNets
measured at different batch sizes (1, 5, and 10) on a cloud GPU
(NVIDIA Titan Xp with 3840 CUDA cores) and an embedded
CPU (ARM Cortex-A53 with 4 cores).

ConvNet
NVIDIA Titan Xp ARM Cortex-A53

1 5 10 1 5 10

MobileNetV1 18.2 18.6 18.7 53.1 290.6 569.9
MobileNetV2 12.1 12.4 12.9 44.2 261.8 513.5

EfficientNet-B0 21.3 22.4 22.6 68.5 358.9 682.3
EfficientNet-B1 31.9 33.4 33.9 103.4 536.4 1290.2

that is, the augmented images get processed in parallel with
negligible overhead (see Table I). The same does not hold on
the edge, where ConvNets are made run on mobile devices
powered by low-power CPUs with limited resources [10][11].
Table I collects a quantitative comparison, showing that batch
inference raises a prohibitive latency overhead on embedded
CPUs, which in turn prevents the portability of TTA. Indeed,
batch inference gets 5.5⇥ (batch size=5) and 11.2⇥ (batch
size=10) slower than a single inference (batch size=1), which
is even less efficient than sequential processing.

Starting from these observations, this paper introduces
AdapTTA, an adaptive implementation of TTA suited for em-
bedded systems. Unlike static TTA strategies, where the num-
ber of modified samples fed to the ConvNet is fixed, AdapTTA
self-regulates the number of transformations and feed-forward
passes dynamically. The transformed images are generated and
processed sequentially till the model achieves good confidence
on the main outcome. Specifically, AdapTTA relies on the fact
that different inputs come with different intrinsic complexity
and the minimum number of transformations needed to reach
an accurate classification changes on a sample basis. This
suggests the number of feed-forward passes can be adjusted
at run-time depending on the confidence level accumulated.
In such a way, the processing gets faster for ”easy” images,
slower for the most ”complex” ones. Leveraging the statistics
of the input patterns, AdapTTA provides a substantial average
speed-up compared to the original static approach.

AdapTTA was tested on four state-of-the-art ConvNets for
image classification, taking into account two common TTA
policies, namely, 5-Crops and 10-Crops [7], [8], [9], which
refer to five and ten consecutive crops on the same image,
respectively. To notice that the main objective here is not
to find the transformations that reach the highest results, a
research problem already addressed in previous works [12],978-1-6654-2614-5/21/$31.00 ©2021 IEEE

TTA conceived for GPUs:
exploit batch inference

[13], but rather to demonstrate the feasibility of the proposed
dynamic scheme for low-power applications. AdapTTA is
orthogonal to the kind of input augmentation applied indeed.
The experiments were thereby conducted on a commercial
off-the-shelf embedded platform powered by an ARM Cortex-
A53 CPU. Collected results show that AdapTTA reaches faster
processing than static TTA, from 1.40⇥ to 2.21⇥ on average,
still preserving the same accuracy gain. This demonstrates the
improved portability and scalability of the method, which can
be easily adapted to many edge applications without incurring
any modification on the training pipeline.

II. RELATED WORKS

Data augmentation is key for training ConvNets. It consists
of applying random transformations on the input data to
increase the diversity of the training samples, with the final
goal of improving the generalization capability of the model.
The most simple implementations used in computer vision
problems rely on a set of geometric transformations (e.g.,
translation, rotation, flipping) and graphical transformations
(e.g., brightness, contrast, saturation), often hand-tuned by do-
main experts to match the conditions of real-life scenarios [7],
[14]. More advanced strategies aim to automate the design of
the augmentation policy, for instance, through a grid search
exploration [4], or using faster-searching processes driven by
reinforcement learning [3] and gradient-based methods [15].
Some of these strategies have been successfully integrated with
the training of state-of-the-art ConvNets [1].

Data augmentation at training time is often not enough
to handle the unpredictable changes in the data distribution
[12], [16]. Therefore, TTA has been employed to increase the
predictive performance of the model. TTA works at inference
time, employing the transformations typically used in data
augmentation. It aims to generate altered versions of the same
input with a similar distribution of the training data, providing
the model with more information. In practice, a set of modified
samples is fed to the ConvNet, and the partial predictions are
aggregated through majority voting or averaging. Similarly to
data augmentation, the TTA policy can be hand-crafted [7],
[8], [9] or discovered by automatic algorithms [12], [13].
Overall, TTA enables to improve the prediction accuracy [17]
and the robustness against adversarial attacks [18].

Regardless of the transformations adopted, the existing TTA
policies have been conceived and validated on ConvNets
running in the cloud, where even a very large set of input
transformations can be efficiently distributed over the exten-
sive parallelism of GPUs. The implementation of TTA on
embedded platforms cannot leverage such parallelism, and the
efficiency on low-power devices is a less explored problem,
which is the target of this work.

III. ADAPTIVE TEST-TIME AUGMENTATION

All the existing TTA policies share the following limitation:
they apply a fixed and predefined number of transformations
to each input data, namely, they are static. This represents
a major bottleneck for the adoption of TTA on embedded

,QSXW�,PDJHV

���

&RQY1HW

���

)LQDO�
SUHGLFWLRQ

$JJUHJDWLRQ

$XJPHQWHG�,PDJHV

&

Figure 1: Flow diagram of static TTA policy for an image
classification task.

systems. A more detailed view of the execution flow of a
generic TTA policy is depicted in Figure 1. It refers to an
image classification problem involving C classes. First, a set
of N altered versions x0 of the input image x is generated
through the application of a set of transformation T : x ! x0.
Second, the generated images are processed by the ConvNet
in parallel or sequence (more details in Section V). Third,
the N partial predictions are aggregated to compute the final
outcome. The parameter N is defined at design time by the
TTA policy, hence each prediction encompasses the same
number of inferences for each input image.

Such a static strategy might be too conservative for most of
the samples, especially for certain inputs with key features well
exposed and easy to be detected. AdapTTA has been conceived
to fulfill a simple objective: implement a more flexible TTA
mechanism monitoring intermediate results to apply the lowest
number of transformations in T that allows to infer the correct
output.

The schematic flow of AdapTTA is illustrated in Figure
2. Given an input image, modified versions are generated and
fed to the ConvNet iteratively. After each inference, the partial
prediction probabilities pi are aggregated through a class-wise
average P avg to compute a confidence score defined as follows:

CS = P avg-1 � P avg-2 (1)

where the P avg-1 and P avg-2 denote the probability of the
first and second highest scored classes respectively. If the
confidence score satisfies a pre-defined confidence threshold
⌧ (CS > ⌧), the prediction is deemed reliable and the
TTA loop stops. The final inference outcome is then returned
by taking the highest probability in P avg. The full set of
augmented samples in T are evaluated only in the worst-case,
i.e., if CS gets smaller than ⌧ . In this case, AdapTTA returns
the same prediction of the static TTA consuming the same
computational effort. In other words, AdapTTA implements
an adaptive mechanism to adjust the augmentation passes at

Data Redundancy
for Accuracy Gain

(up to +4%)

×𝟏𝟎

Embedded CPUs:
batch≈N proportional

×𝟓×𝟏

Inference latency (ms)

5

Minimize this cost

Inference-time

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

,QSXW�
,PDJH

���&RQY1HW

&

3UHGLFWLRQV
3UREDELOLW\

&RQILGHQFH
(YDOXDWLRQ

<HV

1R

$XJPHQWHG
,PDJHV

��� &RQILGHQFH
6FRUH)LQDO�

SUHGLFWLRQ

&

$JJUHJDWLRQ

6

AdapTTA: Adaptive Test-Time Augmentation

From TTA to AdapTTA for Embedded ConvNets: main intuition
• Fixed N transformed images might bee too conservative
• For certain inputs, the key features are well exposed and easy to be detected.
• AdapTTA: a more flexible TTA mechanism exploiting intermediate results

CS = Pavg-1 – Pavg-2

𝜏 is a user-defined
confidence threshold.

Sequentially

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Experimental Setup
• Augmentation Policies: 5C e 10C (sota)

• Hardware Platforms & Compiler Toolchain
• Odroid-C2 [1]:

• 4 Arm Cortex-A53 @ 1.5 GHz
• 1 GB RAM

• TFLite v1.14
• GNU Toolchain v6.5

7

AdapTTA: Adaptive Test-Time Augmentation

���

�
�
�

7RS�OHIW %RWWRP�ULJKW 7RS�ULJKW %RWWRP�OHIW 7RS�OHIW�+) %RWWRP�ULJKW�+) 7RS�ULJKW�+) %RWWRP�OHIW�+),QSXW�,PDJH

���

�
�
�

&HQWHU�&URS &HQWHU�&URS�+)

+RUL]RQDO�)OLSSLQJ
��&URSV

���&URSV

Figure 3: Example of 5-Crops and 10-Crops TTA policies. HF denotes the application of horizontal flipping.

Table II: Memory, nominal top-1 accuracy without TTA (Top-
1), and nominal latency (Lnom) of the selected benchmarks.

ConvNet Storage Top-1 Lnom
[MB] [%] [ms]

MobileNetV1 4.3 70.0 53.1
MobileNetV2 3.4 70.8 44.2
EfficientNet-B0 5.4 74.4 68.5
EfficientNet-B1 6.4 75.9 103.4

10-Crops (10C) - is an extension of the 5C policy; it applies
the left-to-right horizontal flipping to the five crops of 5C for
a total of 10 images (Figure 3).

These policies enable substantial improvements in the clas-
sification accuracy as reported Table III. Obviously, doubling
the number of transformations (from 5C to 10C) increases
the accuracy gain. Moreover, the transformations get pro-
cessed efficiently even on resource-constrained devices: on
the Cortex-A53 CPU, cropping requires only 0.8ms and
horizontal flipping 0.9ms.

Table III: Accuracy gain (in %) of 5-Crops (5C) and 10-Crops
(10C) TTA policies compared to the nominal values for static
TTA and AdapTTA (⌧ = 0.8).

ConvNet
Static TTA AdapTTA

ConvNet 5C 10C 5C 10C

MobileNetV1 2.7 3.1 2.7 3.1
MobileNetV2 2.2 2.9 2.2 2.9
EfficientNet-B0 1.1 1.3 1.1 1.3
EfficientNet-B1 2.2 2.5 2.2 2.5

V. RESULTS

A. Efficiency of AdapTTA

To evaluate the benefits of AdapTTA, we fixed the con-
fidence threshold ⌧ = 0.8 (maximum value is 1.0) for
all the adopted ConvNets. Table III reports the accuracy
gains achieved with this configuration. In all the benchmarks,
AdapTTA ensures the same accuracy levels as static TTA.
We point out that the selected value of ⌧ could limit the
potential savings of AdapTTA, as even lower values could be
enough to achieve the same accuracy. However, we opted for
this conservative choice to assess the feasibility of AdapTTA

Table IV: Average number of inferences in AdapTTA for the
5-Crops (5C) and 10-Crops (10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57
MobileNetV2 3.37 6.26
EfficientNet-B0 3.57 6.75
EfficientNet-B1 3.24 6.02

decoupling our analysis from the optimization of ⌧ . For a more
in-depth analysis on the confidence threshold, see Section V-B.

We compared the computational efficiency of a standard
static TTA and AdapTTA measuring the average prediction
rate (in FPS) across the ImageNet validation set (50k images).
For the static TTA, we benchmarked two different implemen-
tations:
Batch-TTA - the augmented images get processed in parallel
through batching (batch size is equal to the number of crops);
Seq-TTA - the augmented images get processed sequentially.

Collected results are summarized in Figure 4. As mentioned
in Section I, batching turns out to be inefficient on embedded
CPUs due to the low number of parallel cores (4 in the Cortex-
A53), hence, Seq-TTA is slightly faster than Batch-TTA. Most
importantly, AdapTTA enables substantial acceleration, with
much faster prediction rates ranging from 1.40⇥ to 1.78⇥ in
5C and from 1.49⇥ to 2.21⇥ in 10C.

In MobileNetV1, AdapTTA on 10C outperforms Seq-TTA
on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05 FPS vs. 3.73 FPS). The reason can be inferred from Ta-
ble IV, which reports the average number of inferences needed
to run a prediction with AdapTTA. AdapTTA needs less
than than 5 (4.57) inferences on average (row MobileNetV1,
column 10C). Despite that, it achieves superior performance
than a static 5C implementation, demonstrating that static
TTA is too conservative in most cases and unreliable for less
frequent complex inputs.

B. On the Optimality of Confidence Threshold

This section aims to assess the sensitivity of AdapTTA
efficiency on the hyper-parameter ⌧ . Even though we selected
the same value (⌧ = 0.8) for all the networks in the pre-
liminary analysis of Section V-A, more precise control of ⌧
could enable additional margins of optimization. The search
of the optimal value should be conducted on a set of data
disjoint from those used in the training and the evaluation of
the ConvNets by developing a dedicated algorithm, a problem

[1] https://wiki.odroid.com/odroid-c2/odroid-c2

• Image Classification ConvNet Benchmaks

���

�
�
�

7RS�OHIW %RWWRP�ULJKW 7RS�ULJKW %RWWRP�OHIW 7RS�OHIW�+) %RWWRP�ULJKW�+) 7RS�ULJKW�+) %RWWRP�OHIW�+),QSXW�,PDJH

���

�
�
�

&HQWHU�&URS &HQWHU�&URS�+)

+RUL]RQDO�)OLSSLQJ
��&URSV

���&URSV

Figure 3: Example of 5-Crops and 10-Crops TTA policies. HF denotes the application of horizontal flipping.

Table II: Memory, nominal top-1 accuracy without TTA (Top-
1), and nominal latency (Lnom) of the selected benchmarks.

ConvNet Storage Top-1 Lnom
[MB] [%] [ms]

MobileNetV1 4.3 70.0 53.1
MobileNetV2 3.4 70.8 44.2
EfficientNet-B0 5.4 74.4 68.5
EfficientNet-B1 6.4 75.9 103.4

10-Crops (10C) - is an extension of the 5C policy; it applies
the left-to-right horizontal flipping to the five crops of 5C for
a total of 10 images (Figure 3).

These policies enable substantial improvements in the clas-
sification accuracy as reported Table III. Obviously, doubling
the number of transformations (from 5C to 10C) increases
the accuracy gain. Moreover, the transformations get pro-
cessed efficiently even on resource-constrained devices: on
the Cortex-A53 CPU, cropping requires only 0.8ms and
horizontal flipping 0.9ms.

Table III: Accuracy gain (in %) of 5-Crops (5C) and 10-Crops
(10C) TTA policies compared to the nominal values for static
TTA and AdapTTA (⌧ = 0.8).

ConvNet
Static TTA AdapTTA

ConvNet 5C 10C 5C 10C

MobileNetV1 2.7 3.1 2.7 3.1
MobileNetV2 2.2 2.9 2.2 2.9
EfficientNet-B0 1.1 1.3 1.1 1.3
EfficientNet-B1 2.2 2.5 2.2 2.5

V. RESULTS

A. Efficiency of AdapTTA

To evaluate the benefits of AdapTTA, we fixed the con-
fidence threshold ⌧ = 0.8 (maximum value is 1.0) for
all the adopted ConvNets. Table III reports the accuracy
gains achieved with this configuration. In all the benchmarks,
AdapTTA ensures the same accuracy levels as static TTA.
We point out that the selected value of ⌧ could limit the
potential savings of AdapTTA, as even lower values could be
enough to achieve the same accuracy. However, we opted for
this conservative choice to assess the feasibility of AdapTTA

Table IV: Average number of inferences in AdapTTA for the
5-Crops (5C) and 10-Crops (10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57
MobileNetV2 3.37 6.26
EfficientNet-B0 3.57 6.75
EfficientNet-B1 3.24 6.02

decoupling our analysis from the optimization of ⌧ . For a more
in-depth analysis on the confidence threshold, see Section V-B.

We compared the computational efficiency of a standard
static TTA and AdapTTA measuring the average prediction
rate (in FPS) across the ImageNet validation set (50k images).
For the static TTA, we benchmarked two different implemen-
tations:
Batch-TTA - the augmented images get processed in parallel
through batching (batch size is equal to the number of crops);
Seq-TTA - the augmented images get processed sequentially.

Collected results are summarized in Figure 4. As mentioned
in Section I, batching turns out to be inefficient on embedded
CPUs due to the low number of parallel cores (4 in the Cortex-
A53), hence, Seq-TTA is slightly faster than Batch-TTA. Most
importantly, AdapTTA enables substantial acceleration, with
much faster prediction rates ranging from 1.40⇥ to 1.78⇥ in
5C and from 1.49⇥ to 2.21⇥ in 10C.

In MobileNetV1, AdapTTA on 10C outperforms Seq-TTA
on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05 FPS vs. 3.73 FPS). The reason can be inferred from Ta-
ble IV, which reports the average number of inferences needed
to run a prediction with AdapTTA. AdapTTA needs less
than than 5 (4.57) inferences on average (row MobileNetV1,
column 10C). Despite that, it achieves superior performance
than a static 5C implementation, demonstrating that static
TTA is too conservative in most cases and unreliable for less
frequent complex inputs.

B. On the Optimality of Confidence Threshold

This section aims to assess the sensitivity of AdapTTA
efficiency on the hyper-parameter ⌧ . Even though we selected
the same value (⌧ = 0.8) for all the networks in the pre-
liminary analysis of Section V-A, more precise control of ⌧
could enable additional margins of optimization. The search
of the optimal value should be conducted on a set of data
disjoint from those used in the training and the evaluation of
the ConvNets by developing a dedicated algorithm, a problem

[2] Tensorflow lite hosted models - https://www.tensorflow.org/lite/guide/hosted_models
[3] Tensorflow hub - https://tfhub.dev

[2]

[3]

[ImageNet]

More redundancy, higher accuracy

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Experimental Results
• ImageNet validation set (50k images)
• Confidence Threshold 𝜏 = 0.8

8

AdapTTA: Adaptive Test-Time Augmentation
���

�
�
�

7RS�OHIW %RWWRP�ULJKW 7RS�ULJKW %RWWRP�OHIW 7RS�OHIW�+) %RWWRP�ULJKW�+) 7RS�ULJKW�+) %RWWRP�OHIW�+),QSXW�,PDJH

���

�
�
�

&HQWHU�&URS &HQWHU�&URS�+)

+RUL]RQDO�)OLSSLQJ
��&URSV

���&URSV

Figure 3: Example of 5-Crops and 10-Crops TTA policies. HF denotes the application of horizontal flipping.

Table II: Memory, nominal top-1 accuracy without TTA (Top-
1), and nominal latency (Lnom) of the selected benchmarks.

ConvNet Storage Top-1 Lnom
[MB] [%] [ms]

MobileNetV1 4.3 70.0 53.1
MobileNetV2 3.4 70.8 44.2
EfficientNet-B0 5.4 74.4 68.5
EfficientNet-B1 6.4 75.9 103.4

10-Crops (10C) - is an extension of the 5C policy; it applies
the left-to-right horizontal flipping to the five crops of 5C for
a total of 10 images (Figure 3).

These policies enable substantial improvements in the clas-
sification accuracy as reported Table III. Obviously, doubling
the number of transformations (from 5C to 10C) increases
the accuracy gain. Moreover, the transformations get pro-
cessed efficiently even on resource-constrained devices: on
the Cortex-A53 CPU, cropping requires only 0.8ms and
horizontal flipping 0.9ms.

Table III: Accuracy gain (in %) of 5-Crops (5C) and 10-Crops
(10C) TTA policies compared to the nominal values for static
TTA and AdapTTA (⌧ = 0.8).

ConvNet
Static TTA AdapTTA

ConvNet 5C 10C 5C 10C

MobileNetV1 2.7 3.1 2.7 3.1
MobileNetV2 2.2 2.9 2.2 2.9
EfficientNet-B0 1.1 1.3 1.1 1.3
EfficientNet-B1 2.2 2.5 2.2 2.5

V. RESULTS

A. Efficiency of AdapTTA

To evaluate the benefits of AdapTTA, we fixed the con-
fidence threshold ⌧ = 0.8 (maximum value is 1.0) for
all the adopted ConvNets. Table III reports the accuracy
gains achieved with this configuration. In all the benchmarks,
AdapTTA ensures the same accuracy levels as static TTA.
We point out that the selected value of ⌧ could limit the
potential savings of AdapTTA, as even lower values could be
enough to achieve the same accuracy. However, we opted for
this conservative choice to assess the feasibility of AdapTTA

Table IV: Average number of inferences in AdapTTA for the
5-Crops (5C) and 10-Crops (10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57
MobileNetV2 3.37 6.26
EfficientNet-B0 3.57 6.75
EfficientNet-B1 3.24 6.02

decoupling our analysis from the optimization of ⌧ . For a more
in-depth analysis on the confidence threshold, see Section V-B.

We compared the computational efficiency of a standard
static TTA and AdapTTA measuring the average prediction
rate (in FPS) across the ImageNet validation set (50k images).
For the static TTA, we benchmarked two different implemen-
tations:
Batch-TTA - the augmented images get processed in parallel
through batching (batch size is equal to the number of crops);
Seq-TTA - the augmented images get processed sequentially.

Collected results are summarized in Figure 4. As mentioned
in Section I, batching turns out to be inefficient on embedded
CPUs due to the low number of parallel cores (4 in the Cortex-
A53), hence, Seq-TTA is slightly faster than Batch-TTA. Most
importantly, AdapTTA enables substantial acceleration, with
much faster prediction rates ranging from 1.40⇥ to 1.78⇥ in
5C and from 1.49⇥ to 2.21⇥ in 10C.

In MobileNetV1, AdapTTA on 10C outperforms Seq-TTA
on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05 FPS vs. 3.73 FPS). The reason can be inferred from Ta-
ble IV, which reports the average number of inferences needed
to run a prediction with AdapTTA. AdapTTA needs less
than than 5 (4.57) inferences on average (row MobileNetV1,
column 10C). Despite that, it achieves superior performance
than a static 5C implementation, demonstrating that static
TTA is too conservative in most cases and unreliable for less
frequent complex inputs.

B. On the Optimality of Confidence Threshold

This section aims to assess the sensitivity of AdapTTA
efficiency on the hyper-parameter ⌧ . Even though we selected
the same value (⌧ = 0.8) for all the networks in the pre-
liminary analysis of Section V-A, more precise control of ⌧
could enable additional margins of optimization. The search
of the optimal value should be conducted on a set of data
disjoint from those used in the training and the evaluation of
the ConvNets by developing a dedicated algorithm, a problem

MobileNetV2
+2.2

+2.9

EfficientNetB0

+1.1

+1.3

EfficientNetB1

+2.2

+2.5

MobileNetV1
+2.7

+3.1

Accuracy gain
Number of inferences (avg)

More efficient Embedded TTA
1. Accuracy gain at inference-time
2. Contained latency overhead

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

ConvNets in embedded real-life scenarios: Performance challenges
• Deploy continuous inference regime with latency constraints:

• Power demanding task: intensive workload at max. frequency
• Embedded systems with limited Thermal Design Power (TDP),

no room for heat spreader or active cooling

TVFS: Topology Voltage Frequency Scaling

9

Continuous Inference
Thermal Instability

audio/time-series classification

Image classification w/ consensus (e.g., TTA)

Horse

on the field

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

TVFS: Topology Voltage Frequency Scaling

10

Thermal-induced performance loss
• Continuous inference of embedded

ConvNets on CPUs w/ limited TDP under
latency constraint (Lc)

• Intensive workload at max. frequency
(VFmax) affects the thermal stability
• On-chip temperature oversteps safety

threshold (Tmax) – Thermal Throttling
• To avoid irreversible damages,

OS policy lowers core’s VF (VFlow) until
temperature is back to safety

• Repeated thermal throttling leads to
performance penalty, thus, latency
constraint mismatch

Electronics 2019, 8, 1423 4 of 13

on voltage and a linear dependence on frequency. Custom power distribution schemes, e.g., [25], can
push the efficiency of DVFS even beyond these theoretical relationships.

Commercial CPUs offer a standard set of voltage and frequency (VF) levels (19 in the Cortex-A15),
which enable a fine grained control on power and performance. As will be discussed in Section 5.3, we
observed that other knobs are less efficient for controlling temperature during continuous inference.
Each VF level identifies a specific operating point in the power-performance space. The maximum
performance can be achieved using the highest voltage and the maximum frequency available, which
we refer to as VFmax; within the Cortex-A15, VFmax = 1.3625 V @ 2 GHz. Changing the operating
point at run-time enables managing the power-performance trade-off, which means controlling the
temperature profile at the expense of some latency penalty.

An efficient management policy aims to guarantee thermal stability with minimum speed
degradation. Off-the-shelf SoCs implements a reactive thermal management mechanism. To meet high
computational demands, the active cores operate at VFmax and invoke a safety mechanism, thermal
throttling, that reduces the VF level when the temperature reaches a critical threshold, thus preventing
the processor, and the whole device, from overheating. For instance, the Cortex-A15 CPU down-scales
the voltage-frequency level from VFmax to VFlow = 0.8875 V @ 900 MHz when the temperature exceeds
Tmax = 90 �C. A qualitative analysis of this strategy is depicted in Figure 1.

Time (s)

T (ΣC)

Tmax

VFmax

VFlow

Thermal
Throttling

Occurrence

VF

Time (s)

Latency (s)

Lnom

Sustained Thermal Throttling

Unpredictable Latency

Latency
Increase

Figure 1. Qualitative analysis of temperature (above) and inference latency (below) evolution over
time under reactive thermal management.

Under intensive workloads, like those of ConvNets, this mechanism may lead to significant
performance degradation, especially when continuous inference is held for long time intervals.
As shown in the top plot of Figure 1, running the cores at maximum performance pushes the
temperature towards the critical threshold Tmax and forces the SoC to throttle the performance of the
cores switching from the high performance state VFmax to the low power state VFlow. As soon as the
temperature falls below Tmax, the SoC switches back to VFmax, forcing another invocation of thermal
throttling in a very short time; the sequence repeats ceaselessly till the task ends. This working mode
is called sustained thermal throttling: the temperature fluctuates around the safety threshold over
a sustained period, and so does the voltage-frequency operating point, which moves up and down
between VFmax and VFlow. As shown in the bottom plot of Figure 1, this has a negative impact on
latency: (i) working at VFlow introduces an overhead with respect to the nominal latency Lnom; (ii) the
cyclic swapping from high performance (VFmax) to low power (VFlow) modes makes the latency less
predictable. For these reasons, reactive strategies turn out to be quite inefficient. In the specific case of

Lc

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

TVFS: Topology Voltage Frequency Scaling

11

Main Idea
• Thermal-aware performance management through the cooperation of:

• power-reduction techniques -> Voltage-Frequency Scaling (VFS)
• algorithmic optimizations -> ConvNet Topology Scaling (TS)

VFmax

No opts

time

VF ↓

VFS

time
RIZZO et al.: TVFS FOR RELIABLE EMBEDDED CONVNETS 673

Fig. 1. TS on a 4-layer ConvNet via input resizing (re-scaling factor ρ) and
filter pruning (re-scaling factor α).

II. BACKGROUND

A. Thermal-Aware Voltage-Frequency Scaling
Modern SoCs offer a predefined set of Voltage-Frequency

(VF) levels to adjust power and performance at run-time. CPUs
with a low TDP can sustain high VF levels for a short time
interval, as the high power consumption burns the available
thermal headroom quickly. When the temperature exceeds the
safety threshold Tmax, the protection mechanisms embedded
into the operating system drive the active cores to a low power
state with a low VF level until the on-chip temperature gets
below a safe limit. This simple yet effective thermal throttling
mechanism has a dramatic impact on performance, requiring
a relaxation of the latency constraints.

Smarter control policies [16], [17] are built upon predictive
models that infer the forthcoming resources demand, anticipat-
ing thermal trends, and thus preventing performance degrada-
tion via proactive VF scaling. However, ConvNets are static
graphs, with no or less need for run-time predictions. This
suggests that static proactive methods where the optimal VF
level is defined at design time might serve the purpose. The
characterization provided in [18] goes in this direction, but
it shows that under the dense workload of a ConvNet, VF
scaling alone is a too weak strategy. Indeed, to avoid thermal
throttling would ask a too low VF level that makes the pro-
cessing intrinsically slow. This motivates the need for a joint
combination of circuit and algorithmic knobs.

B. ConvNets Topology Scaling
Topology Scaling (TS) [4] implements a reshaping of the

ConvNet graph through input resizing, i.e., the lowering of the
input resolution, and filter pruning, the drop out of convolu-
tional filters within the layers. Through this modular approach,
a set of pre-trained ConvNets with the same backbone topol-
ogy but variable size and complexity can be made available
to the end-user. Figure 1 graphically describes TS on a sim-
ple 4-layer ConvNet. Input data (e.g., images as reported in
the picture) with a lower resolution require fewer operations
along the whole chain of layers. Obviously, the classifica-
tion may suffer from accuracy loss due to missing details.
Assuming a square input of size ρ′ × ρ′, with ρ′ < ρ, and ρ
as the original size, the inner features get re-scaled by a factor
δ = ρ′/ρ, achieving a compression ratio of δ2 for each layer.
Besides resolution re-scaling, it is possible to play with the
third dimension, i.e., the layers’ width, by slicing the chan-
nels C. A hyper-parameter α, named width multiplier, is used
to prune the input and output channels at each layer uniformly.
The model can be scaled by setting α ∈ (0, 1], which implies
that for each layer i, both the number of input channels Ci
and output channels Ci+1 is re-scaled by a factor α. Therefore,

the overall number of multiplications and weights reduces by
roughly α2 [4]. The smaller the α, the lower the expressive
power of the network. Both α and ρ are knobs to reduce
the inference latency, and their joint scaling offers a practi-
cal way to implement different (α, ρ) configurations in the
accuracy-latency space.

III. TOPOLOGY VOLTAGE FREQUENCY SCALING (TVFS)
A. Knobs and Their Effect on Temperature and Latency

Defined Ls as the nominal latency for a single forward pass
of the baseline ConvNet topology (i.e., no TS) processed at
maximum speed (i.e., VFmax), a classification task involving
N runs would ideally take L = N · Ls, which we consider as
the nominal constraint. The picture changes when considering
real embedded systems with limited TDP and low heat dissipa-
tion capability. As soon as the temperature reaches the safety
threshold Tmax, the CPU enters a sustained thermal throt-
tling state characterized by fast oscillations between VFmax
and VFlow until the task ends. The plot of Fig. 2(a) shows a
qualitative assessment of the thermal evolution, highlighting
the temperature ripple around Tmax (shaded red area) and the
latency dilation, main source of timing overhead and constraint
violation (L > N · Ls).

The effect of a proactive use of the power knob VFS is
shown in Fig. 2(b). At design time, the optimal VF level is
selected so that the thermal gradient gets lower enough to
avoid the occurrence of throttling events [18]. This is a viable
option to prevent uncertainty, but still not enough to meet the
latency constraint. In fact, a too low VF level might be needed,
which reflects into slow processing and still timing overhead.

The latency knob implemented at the algorithmic-level
through TS offers another possible option to achieve better
thermal-latency trade-off without involving the VF scaling.
Lighter ConvNets with fewer operations and memory accesses
get intrinsically faster indeed. As demonstrated in [15], there
exists a topology with a lower latency (< Ls) that creates
enough slack to compensate for the delay degradation induced
by the thermal throttling. This behavior is shown in Fig. 2(c).
The temperature still reaches Tmax with the same slope of the
original ConvNet (Fig. 2(a)), but the N inferences end sooner.
Also in this case, the latency of a single inference may vary
over time, but the overall constraint is satisfied. To notice that
TS may induce substantial losses of accuracy.

The proposed TVFS combines efficiency and functionality
of VFS and TS, as is shown in Fig 2(d): it leverages VFS to
control the thermal gradient and TS to speed-up the flow. To
find the optimal balance turns to be an optimization problem.

B. Problem Formulation and Performance Trade-Off
The TVFS optimization is as follows: Given a classification

task implemented via N consecutive forward passes of a static
ConvNet, do search for the tuple (αopt, ρopt, VFopt), s.t. the
latency constraint is met L ≤ N ·Ls, and accuracy is maximal.

The effect of TVFS can be appreciated through the qual-
itative space exploration depicted in Fig. 3. The horizontal
dashed line defines the nominal constraint, while the gray gra-
dient in the background highlights the percentage of thermal
throttling (lighter is lower). The baseline implementation (no
TS, VFmax) is represented by the topmost right implementa-
tion (red triangle); its latency is far from the constraint due to

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

VFmax

Atop-1 ↓

TS

time

VFopt

TSopt

No Thermal Throttling

Latency ≤ 𝑵 ' 𝑳𝒔

Min. Accuracy Loss

TVFS

time

+

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

TVFS: Topology Voltage Frequency Scaling

12

Problem Formulation and Experimental Setup

674 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 2. Temperature vs. Execution time for a multi-inference task.

Fig. 3. Classification latency under continuous inference at different TS and
VF points.

sustained throttling. With VFS (blue squares), the latency pro-
gressively reduces till the point of zero-throttling outside the
gray area (circled blue square). This is a point of inflection,
still far from the constraint, and any further reduction of VF
makes latency worse as the CPUs get excessively slow. As an
orthogonal knob, TS does play on the opposite direction (red
triangles) with faster topologies that approach and eventually
cross (circled red triangle) the nominal constraint at the cost of
prediction accuracy. Finally, TVFS (green circles) explores the
diagonal direction, providing additional implementations with
lower latency offset (brought by TS) and better thermal pro-
files (brought by VFS). In particular, the optimal solution (αopt,
ρopt, VFopt) mentioned in the problem formulation (marked
green circle) meets the target latency constraint with the largest
topology possible and the best thermal profile. For the sake of
completeness, the optimal solution depends on N: the gray area
increases toward the left with larger N, pushing the optimal
configuration towards the bottom-left corner.

C. Design Space Exploration
We opted for an offline exhaustive search across the three

dimensions α, ρ, VF. This is justified by the following
observations: (i) ConvNets are static graphs; (ii) N is known
a-priori; (iii) the number of permutations (α, ρ, VF) is low.

Figure 4 shows an abstract view of the framework deployed
to explore the design space. It takes as inputs the set
of pre-trained ConvNet topologies (α, ρ) and the number
of inferences N, and it returns the optimal configuration
(αopt, ρopt, VFopt). There are three main components: (i) an
inference engine to process the ConvNets on-chip through
optimized neural kernels; (ii) a model benchmarking routine
that collects the inference latency L; (iii) a software probe to
read the CPU temperature periodically from the on-chip sen-
sors. We used TensorFlow Lite as the inference engine, while
we adopted a modified version of the TensorFlow Lite Model
Benchmark utility to collect the execution times. During the
exploration, each (α, ρ) model is deployed onto the board,

Fig. 4. Characterization framework overview.

made run N times for each VF level, and then off-loaded with
the acquired samples of latency and temperature. Then, the
collected results are processed by an off-line procedure that
searches the optimal configuration (αopt, ρopt, VFopt).

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup and Benchmarks
As testbench, we used an Odroid-XU4 board hosting the

Ubuntu Mate 16.04 operating system released by Hardkernel,
version 3.10.106-154. The chip-set is the Samsung Exynos
5422, a mobile SoC with a quad-core ARM Cortex-A15 CPU
controlled by a thermal governor with a set of 19 VF levels,
from 200 MHz at 0.85 V to 2 GHz at 1.3625 V, step 100 MHz.
When the on-chip temperature exceeds the threshold T=90 ◦C
(defined by the vendor), the CPU switches into the low-power
state VFlow = 900 MHz at 0.8875 V, which is also the VF
lower bound of the design space exploration. Hereafter, we
denote each VF operating point just using its frequency value
(in GHz). Even though the board is air-cooled, we switched the
fan off to emulate the operating condition of portable devices.
The ambient temperature of the setup is 25 ◦C. All the experi-
ments were conducted with four active threads and the power
governor set to performance. The integration of the addi-
tional low-power quad-core Cortex-A7 CPU available on-chip
had shown no performance gain, and therefore it was dis-
abled during the experiments. The framework of Fig. 4 was
cross-compiled with the GNU ARM Embedded Toolchain v6.5
integrating TensorFlow Lite v1.14.

As ConvNet benchmark, we picked a state-of-art archi-
tecture designed for mobile applications: MobileNet-v1.1 It
is available in 16 different TS configurations pre-trained on
the ImageNet dataset, with α = {1.0, 0.75, 0.50, 0.25} and
ρ = {224, 192, 160, 128}. Each of them is quantized to 8-bit
fixed-point in order to ensure smaller memory footprint and

1www.tensorflow.org/lite/guide/hosted_models, visited on 2019/05/13.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 2. Temperature vs. Execution time for a multi-inference task.

Fig. 3. Classification latency under continuous inference at different TS and
VF points.

sustained throttling. With VFS (blue squares), the latency pro-
gressively reduces till the point of zero-throttling outside the
gray area (circled blue square). This is a point of inflection,
still far from the constraint, and any further reduction of VF
makes latency worse as the CPUs get excessively slow. As an
orthogonal knob, TS does play on the opposite direction (red
triangles) with faster topologies that approach and eventually
cross (circled red triangle) the nominal constraint at the cost of
prediction accuracy. Finally, TVFS (green circles) explores the
diagonal direction, providing additional implementations with
lower latency offset (brought by TS) and better thermal pro-
files (brought by VFS). In particular, the optimal solution (αopt,
ρopt, VFopt) mentioned in the problem formulation (marked
green circle) meets the target latency constraint with the largest
topology possible and the best thermal profile. For the sake of
completeness, the optimal solution depends on N: the gray area
increases toward the left with larger N, pushing the optimal
configuration towards the bottom-left corner.

C. Design Space Exploration
We opted for an offline exhaustive search across the three

dimensions α, ρ, VF. This is justified by the following
observations: (i) ConvNets are static graphs; (ii) N is known
a-priori; (iii) the number of permutations (α, ρ, VF) is low.

Figure 4 shows an abstract view of the framework deployed
to explore the design space. It takes as inputs the set
of pre-trained ConvNet topologies (α, ρ) and the number
of inferences N, and it returns the optimal configuration
(αopt, ρopt, VFopt). There are three main components: (i) an
inference engine to process the ConvNets on-chip through
optimized neural kernels; (ii) a model benchmarking routine
that collects the inference latency L; (iii) a software probe to
read the CPU temperature periodically from the on-chip sen-
sors. We used TensorFlow Lite as the inference engine, while
we adopted a modified version of the TensorFlow Lite Model
Benchmark utility to collect the execution times. During the
exploration, each (α, ρ) model is deployed onto the board,

Fig. 4. Characterization framework overview.

made run N times for each VF level, and then off-loaded with
the acquired samples of latency and temperature. Then, the
collected results are processed by an off-line procedure that
searches the optimal configuration (αopt, ρopt, VFopt).

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup and Benchmarks
As testbench, we used an Odroid-XU4 board hosting the

Ubuntu Mate 16.04 operating system released by Hardkernel,
version 3.10.106-154. The chip-set is the Samsung Exynos
5422, a mobile SoC with a quad-core ARM Cortex-A15 CPU
controlled by a thermal governor with a set of 19 VF levels,
from 200 MHz at 0.85 V to 2 GHz at 1.3625 V, step 100 MHz.
When the on-chip temperature exceeds the threshold T=90 ◦C
(defined by the vendor), the CPU switches into the low-power
state VFlow = 900 MHz at 0.8875 V, which is also the VF
lower bound of the design space exploration. Hereafter, we
denote each VF operating point just using its frequency value
(in GHz). Even though the board is air-cooled, we switched the
fan off to emulate the operating condition of portable devices.
The ambient temperature of the setup is 25 ◦C. All the experi-
ments were conducted with four active threads and the power
governor set to performance. The integration of the addi-
tional low-power quad-core Cortex-A7 CPU available on-chip
had shown no performance gain, and therefore it was dis-
abled during the experiments. The framework of Fig. 4 was
cross-compiled with the GNU ARM Embedded Toolchain v6.5
integrating TensorFlow Lite v1.14.

As ConvNet benchmark, we picked a state-of-art archi-
tecture designed for mobile applications: MobileNet-v1.1 It
is available in 16 different TS configurations pre-trained on
the ImageNet dataset, with α = {1.0, 0.75, 0.50, 0.25} and
ρ = {224, 192, 160, 128}. Each of them is quantized to 8-bit
fixed-point in order to ensure smaller memory footprint and

1www.tensorflow.org/lite/guide/hosted_models, visited on 2019/05/13.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

Static workload of ConvNets Inference Performance Trade-Off Profiling

Odroid-XU4:
• 4 Arm Cortex-A15 w/ 19 VF-levels
• VFmin: 200MHz @ 0.85V
• VFmax: 2GHz @ 1.3625V
• VFth: 900MHz @ 0.8875V

MobileNet v1
𝛼 = [1.0, 0.75, 0.50, 0.25]
𝜌 = [224, 192, 160, 128]

Image Classification
ImageNet (Val. set)

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

TVFS: Topology Voltage Frequency Scaling

13

Experimental ResultsRIZZO et al.: TVFS FOR RELIABLE EMBEDDED CONVNETS 675

Fig. 5. Temperature (top) and inference latency (bottom) trends over N = {10, 100, 500, 2000} runs.

faster processing, yet with negligible accuracy loss. For the
baseline model (α = 1.0, ρ = 224) at VFmax = 2 GHz,
the latency of a single-frame inference is Ls = 32 ms, which
has been used as target for the exploration. In the worst case
(N = 2000), the exploration of the design space, which counts
192 (α, ρ, VF) points (Section III-C), takes 2 h.

B. Results and Discussion
The objective of this section is to provide an assessment

of the proposed TVFS. We thereby provide a fair comparison
against VFS and TS using different figures-of-merit, both func-
tional and extra-functional. The former consists of the top-1
prediction accuracy (Top-1) evaluated on the ImageNet vali-
dation set. The latter include the latency for a single inference
(Lavg) averaged over the N runs, the percentage of thermal
throttling (Th), i.e., the amount of time the CPUs spent at
VFlow, and the average on-chip temperature Tavg measured
over the whole classification task. The experimental campaign
of on-chip measurements is conducted for different values of
N to cover a wide spectrum of possible use-cases, specifically
we set N = {10, 100, 500, 2000}. Lower values are common
for TTA applications (e.g., N = 10), whereas larger values
are needed for time-series classification (from N = 100 to
2000). According to our formulation, the latency constraint is
L ≤ N · Ls, with Ls = 32 ms as anticipated in the previous
sub-section; thus, the constraint turns to be Lavg ≤ Ls.

Table I reports the collected results in four multi-row sec-
tions, one for each value of N. Within them, the first row,
labeled with NS (i.e., No Scaling), refers to the baseline model,
that is the largest topology (α = 1.0, ρ = 224) processed at
maximum voltage and frequency (VFmax), while VFS, TS, and
TVFS rows are for the three scaling methods under analysis.
For each strategy, we reported the optimal tuple (α, ρ, VF) as
illustrated in Fig. 3 (circled markers). In addition, the plots in
Fig. 5 show how the on-chip temperature (top-line plots) and
the inference latency (bottom-line plots) evolve with N; the
four plots have a different scale, one for each specific interval
of N: {1-10}, {1-100}, {1-500}, {1-2000}.

The first observation is that TVFS outperforms the other
strategies by far. It always meets the latency constraint, ensur-
ing the highest accuracy with the lowest temperature profile,
whereas other approaches cannot. As it can be inferred from

TABLE I
SOLUTIONS (α, ρ , VF) FOR VFS, TS, AND TVFS UNDER THE LATENCY

CONSTRAINT OF LT = N · 32 ms

the NS rows of Table I, the limited TDP of the system prevents
the execution at maximum performance. Indeed, even for the
shortest task, i.e., N = 10, the percentage of thermal throttling
is huge (46.3%), with an overall performance degradation of
37.8% with respect to the nominal constraint (from 32 ms to
44.1 ms). The picture gets worse for longer tasks. For instance,
with N = 2000 the throttling percentage rises up to 82.1%,
with a latency overhead of 83.1% (from 32 ms to 58.6 ms).

The VFS approach improves performance preventing CPUs
to enter the low-power state for cooling down the silicon. This
can be verified through the numbers reported in column (Th)
of Table I which exactly report 0% of throttling. However,
VFS still fails to reach the latency constraint, with an over-
head ranging from 11.6% for N = 10, to 64.0% for N = 2000.
The gap gets larger with N, as more aggressive voltage scaling
is needed to extend the thermal headroom over longer timing
intervals (down to 1.2 GHz for N = 2000). Fig. 5 confirms
these observations showing that lower VF levels keep down the
thermal gradient, ensuring flat latency profiles. On the other
hand, TS does matches the latency constraint (Lavg < Ls),
yet incurring some accuracy loss due to the smaller topolo-
gies adopted (66.9% accuracy vs. 70% of the baseline model).

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

RIZZO et al.: TVFS FOR RELIABLE EMBEDDED CONVNETS 675

Fig. 5. Temperature (top) and inference latency (bottom) trends over N = {10, 100, 500, 2000} runs.

faster processing, yet with negligible accuracy loss. For the
baseline model (α = 1.0, ρ = 224) at VFmax = 2 GHz,
the latency of a single-frame inference is Ls = 32 ms, which
has been used as target for the exploration. In the worst case
(N = 2000), the exploration of the design space, which counts
192 (α, ρ, VF) points (Section III-C), takes 2 h.

B. Results and Discussion
The objective of this section is to provide an assessment

of the proposed TVFS. We thereby provide a fair comparison
against VFS and TS using different figures-of-merit, both func-
tional and extra-functional. The former consists of the top-1
prediction accuracy (Top-1) evaluated on the ImageNet vali-
dation set. The latter include the latency for a single inference
(Lavg) averaged over the N runs, the percentage of thermal
throttling (Th), i.e., the amount of time the CPUs spent at
VFlow, and the average on-chip temperature Tavg measured
over the whole classification task. The experimental campaign
of on-chip measurements is conducted for different values of
N to cover a wide spectrum of possible use-cases, specifically
we set N = {10, 100, 500, 2000}. Lower values are common
for TTA applications (e.g., N = 10), whereas larger values
are needed for time-series classification (from N = 100 to
2000). According to our formulation, the latency constraint is
L ≤ N · Ls, with Ls = 32 ms as anticipated in the previous
sub-section; thus, the constraint turns to be Lavg ≤ Ls.

Table I reports the collected results in four multi-row sec-
tions, one for each value of N. Within them, the first row,
labeled with NS (i.e., No Scaling), refers to the baseline model,
that is the largest topology (α = 1.0, ρ = 224) processed at
maximum voltage and frequency (VFmax), while VFS, TS, and
TVFS rows are for the three scaling methods under analysis.
For each strategy, we reported the optimal tuple (α, ρ, VF) as
illustrated in Fig. 3 (circled markers). In addition, the plots in
Fig. 5 show how the on-chip temperature (top-line plots) and
the inference latency (bottom-line plots) evolve with N; the
four plots have a different scale, one for each specific interval
of N: {1-10}, {1-100}, {1-500}, {1-2000}.

The first observation is that TVFS outperforms the other
strategies by far. It always meets the latency constraint, ensur-
ing the highest accuracy with the lowest temperature profile,
whereas other approaches cannot. As it can be inferred from

TABLE I
SOLUTIONS (α, ρ , VF) FOR VFS, TS, AND TVFS UNDER THE LATENCY

CONSTRAINT OF LT = N · 32 ms

the NS rows of Table I, the limited TDP of the system prevents
the execution at maximum performance. Indeed, even for the
shortest task, i.e., N = 10, the percentage of thermal throttling
is huge (46.3%), with an overall performance degradation of
37.8% with respect to the nominal constraint (from 32 ms to
44.1 ms). The picture gets worse for longer tasks. For instance,
with N = 2000 the throttling percentage rises up to 82.1%,
with a latency overhead of 83.1% (from 32 ms to 58.6 ms).

The VFS approach improves performance preventing CPUs
to enter the low-power state for cooling down the silicon. This
can be verified through the numbers reported in column (Th)
of Table I which exactly report 0% of throttling. However,
VFS still fails to reach the latency constraint, with an over-
head ranging from 11.6% for N = 10, to 64.0% for N = 2000.
The gap gets larger with N, as more aggressive voltage scaling
is needed to extend the thermal headroom over longer timing
intervals (down to 1.2 GHz for N = 2000). Fig. 5 confirms
these observations showing that lower VF levels keep down the
thermal gradient, ensuring flat latency profiles. On the other
hand, TS does matches the latency constraint (Lavg < Ls),
yet incurring some accuracy loss due to the smaller topolo-
gies adopted (66.9% accuracy vs. 70% of the baseline model).

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

Preserves On-chip Thermal Stability

A TVFS ≥ A TS

Meets Performance Constraint Contains Accuracy Loss

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Questions

14

Contacts:
robertogiorgio.rizzo@polito.it
andrea.calimera@polito.it

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

References

15

• “AdapTTA: Adaptive Test-Time Augmentation for Reliable Embedded ConvNets”.
L. Mocerino, R. G. Rizzo, V. Peluso, A. Calimera, E. Macii; In: VLSI-SoC 2021.

• “TVFS: Topology Voltage Frequency Scaling for Reliable Embedded ConvNets”.
R. G. Rizzo, V. Peluso, A. Calimera. In: IEEE TCAS-II 68 (2), 672-676 (2020)

• “Performance profiling of embedded convnets under thermal-aware DVFS”.
V. Peluso, R. G. Rizzo, A. Calimera. In: Electronics 8 (12), 1423 (2020)

• “Efficacy of topology scaling for temperature and latency constrained embedded
convnets”. V. Peluso, R. G. Rizzo, A. Calimera. In: Journal of Low Power Electronics and
Applications 10 (1), 10 (2020).

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

Experimental Results
• Calibration set: ImageNet val (1k images)

AdapTTA: Adaptive Test-Time Augmentation

𝜏 = 0.8

MobileNet V1 - 5C Policy CT ...
1 00.9

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

5C 10C
0
1
2
3
4
5
6
7

A
vg

.
F
P
S 1.78x

2.21x

Batch-TTA

Seq-TTA

AdapTTA

(a) MobileNetV1
5C 10C

0
1
2
3
4
5
6
7

A
vg

.
F
P
S 1.49x

1.62x

Batch-TTA

Seq-TTA

AdapTTA

(b) MobileNetV2

5C 10C
0

1

2

3

4

A
vg

.
F
P
S 1.40x

1.49x

Batch-TTA

Seq-TTA

AdapTTA

(c) EfficientNet-B0
5C 10C

0

1

2

3

A
vg

.
F
P
S

1.54x

1.67x

Batch-TTA

Seq-TTA

AdapTTA

(d) EfficientNet-B1

Figure 4: Average prediction rate (Avg. FPS, higher is better) for 5C and 10C policies of the static implementations (Batch-TTA
and Seq-TTA) and AdapTTA. The reported data takes into account the execution time needed for both the transformations and
the inference. The arrows indicate the relative speed-up of AdapTTA compared to Seq-TTA.

that we will investigate in future studies. Indeed, a too low
value of ⌧ can limit the accuracy gains of TTA, while a
too high value can lower the prediction rate as unneeded
transformations get processed. Here, we aim to quantify the
maximum speed-ups that can be achieved while keeping the
highest level of accuracy. For this purpose, we evaluated a
discrete set of values of ⌧ , ranging from 0.1 to 0.9, with a
step of 0.1. The experiments were conducted on the ImageNet
validation set.

Figure 5 summarizes the results collected on MobileNetV1
(top row) and EfficientNet-B1 (bottom row) with the 5C
policy. Similar trends were observed for the other networks
and policies, which we omitted for brevity. The main outcome
of the analysis is that the minimum value of ⌧ ensuring
the highest accuracy gain differs across the selected bench-
marks: 0.7 for MobileNetV1 and 0.5 for EfficientNet-B1.
This translates to additional acceleration: in MobileNetV1, the
prediction rate increases from 6.64 FPS (⌧ = 0.8) to 7.28
FPS (⌧ = 0.7) on average; in EfficientNet-B1, from 2.97
FPS (⌧ = 0.8) to 4.16 FPS (⌧ = 0.5). Besides a different
topology, these networks followed a different training protocol,
e.g., integrating different data augmentation pipelines [27],
[1]. Future studies should therefore investigate the impact
of the training hyper-parameters to understand if corrective
actions applied at training time could reduce the number
of transformations needed at test time, hence, improve the
efficiency of AdapTTA.

Finally, ⌧ could be easily tuned at run-time to enable a fine-
grain trade-off between accuracy and speed. For example, with
⌧ = 0.5 MobileNetV1 reaches 8.7 FPS, yet with a marginal
accuracy loss with respect to Seq-TTA (< 0.5%). This can be

helpful when the application has to rescale its energy footprint
(e.g., if the mobile system is running out of battery) or when
the classification task is not that critical to being solved (in
which case some accuracy loss is tolerable).

VI. CONCLUSIONS

This work presented AdapTTA, an adaptive implementation
of TTA suited for embedded systems powered by off-the-shelf
CPUs. Differently from static strategies, AdapTTA aims to
minimize number of feed-forward passes to output a correct
prediction depending on the input complexity. Experimental
results proved its efficiency across different families of Con-
vNets for the mobile segment and different TTA policies.
Overall, AdapTTA reaches substantial acceleration, from to
1.40⇥ to 2.21⇥ compared to static TTA policies, with no loss
of prediction accuracy.

REFERENCES

[1] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[2] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” in International
Conference on Learning Representations, 2019.

[3] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, 2019, pp. 113–123.

[4] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search space,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 702–703.

[5] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-
time training with self-supervision for generalization under distribution
shifts,” in Proceedings of the 37th International Conference on Machine
Learning, vol. 119. PMLR, 13–18 Jul 2020, pp. 9229–9248.

AdapTTA: Adaptive Test-Time Augmentation

17

+2.7

+3.1

Accuracy gain
+2.2

+2.9

+1.1

+1.3

+2.2

+2.5

Experimental Results
• ImageNet validation set (50k images)
• Confidence Threshold 𝜏 = 0.8

IWES 2021 Politecnico di Torino – EDA Group Roberto Giorgio Rizzo

TVFS: Topology Voltage Frequency Scaling

18

Experimental Results
• More stringent latency constraints

A TVFS ≥ A TS

676 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 6. TVFS accuracy gain (left) and temperature drop (right) for tighter latency constraints.

To notice that TS does not alleviate the percentage of ther-
mal throttling, that is lower than NS but still large (Th ranges
from 38.5% for N = 10, up to 73.7% for N = 2000). The
VF level is the highest one (2 GHz), and so the temperature,
which keeps around the critical value indeed (Tavg ≥ 88.8 ◦C),
raising reliability concerns and user experience issues. Fig. 5
(top) shows that TS reaches the safety threshold of 90 ◦C after
2 runs and raises sustained throttling events. The continuous
switching between VFmax and VFlow reflects on the inference
latency and its ripple as highlighted in Fig. 5 (bottom).

TVFS combines the advantages of both VFS and TS. The
most interesting aspect is that TVFS enables the task to run
at a lower VF, still meeting the requirements. This condition
allows a substantial reduction in power consumption, keep-
ing the temperature far from that of VFS and TS, −6.6 ◦C
and −12.1 ◦C on average over the N values. Moreover, even
when TVFS loses accuracy getting closer to TS (for instance,
N=2000), it still ensures lower temperatures (−15.7 ◦C). In
other words, TVFS plays with the two hardware and software
knobs finding the best thermal-accuracy trade-off. The plots
in Fig. 5 help visualize the benefits of TVFS: (i) temperature
is far from the critical threshold, (ii) 0% of thermal throttling,
(iii) no latency variations.

As a final remark, the barplots in Fig. 6 emphasize the sav-
ings brought by TS in terms of accuracy (left) and average
temperature (right) under tighter latency constraints L ≤ N ·Lt,
with Lt = {32, 24, 16, 8} ms, and different inference runs N.
We omitted VFS as it violates the constraints. As reported
by the top labels, TVFS achieves higher or equal accuracy
(+3.6% as the best-case) with lower on-chip temperature from
−21.6 ◦C (best-case) to −3.6 ◦C (worst-case). This validates
TVFS and its important role in pursuing reliable ConvNet
processing.

V. CONCLUSION

This brief presented TVFS, a novel performance man-
agement strategy for embedded ConvNets on off-the-shelf
low-power CPUs. Via the cooperation of power knob (VFS)
and algorithmic optimization (TS), TVFS enables efficient
multi-inference tasks under latency constraints ensuring ther-
mal stability. The experimental results revealed that TVFS
can sustain up to 2000 runs of MobileNet-v1 on the ARM
A15 CPU under tight latency targets, keeping the average
on-chip temperature below the critical threshold (−16.4 ◦C)
and a minor accuracy loss (3.1% as a worst-case). We believe
that the integration of TVFS into standard inference engines
for embedded systems would open to many practical applica-
tions. Moreover, smarter algorithms might speed-up the search
phase to find the best setting, useful in the context of neural
architecture search.

REFERENCES

[1] A.-C. Cheng et al., “Searching toward pareto-optimal device-aware neu-
ral architectures,” in Proc. Int. Conf. Comput.-Aided Design, 2018,
p. 136.

[2] T.-J. Yang et al., “NetAdapt: Platform-aware neural network adaptation
for mobile applications,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 285–300.

[3] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, 2018,
pp. 2704–2713.

[4] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available:
arXiv:1704.04861.

[5] M. Tan et al., “MnasNet: Platform-aware neural architecture search
for mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Long Beach, CA, USA, 2019, pp. 2820–2828.

[6] V. Peluso, R. G. Rizzo, A. Cipolletta, and A. Calimera, “Inference on
the edge: Performance analysis of an image classification task using
off-the-shelf cpus and open-source ConvNets,” in Proc. IEEE 6th Int.
Conf. Soc. Netw. Anal. Manag. Security (SNAMS), Granada, Spain, 2019,
pp. 454–459.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, 2016, pp. 770–778.

[8] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in Proc. IEEE 25th Int. Workshop Mach. Learn. Signal
Process. (MLSP), Boston, MA, USA, 2015, pp. 1–6.

[9] T. Nilanon, J. Yao, J. Hao, S. Purushotham, and Y. Liu,
“Normal/abnormal heart sound recordings classification using convo-
lutional neural network,” in Proc. IEEE Comput. Cardiol. Conf. (CinC),
Vancouver, BC, Canada, 2016, pp. 585–588.

[10] D. Brooks, R. P. Dick, R. Joseph, and L. Shang, “Power, thermal, and
reliability modeling in nanometer-scale microprocessors,” IEEE Micro,
vol. 27, no. 3, pp. 49–62, May/Jun. 2007.

[11] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, “User-
specific skin temperature-aware DVFS for smartphones,” in Proc. Design
Autom. Test Eur. Conf. Exhibit. (DATE), Grenoble, France, 2015,
pp. 1217–1220.

[12] Y. G. Kim, J. Kong, and S. W. Chung, “A survey on recent
OS-level energy management techniques for mobile processing units,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 10, pp. 2388–2401,
Oct. 2018.

[13] S. M. Nabavinejad, H. Hafez-Kolahi, and S. Reda, “Coordinated DVFS
and precision control for deep neural networks,” IEEE Comput. Archit.
Lett., vol. 18, no. 2, pp. 136–140, Jul.–Dec. 2019.

[14] W. Kang, D. Kim, and J. Park, “DMS: Dynamic model scaling for
quality-aware deep learning inference in mobile and embedded devices,”
IEEE Access, vol. 7, pp. 168048–168059, 2019.

[15] V. Peluso, R. G. Rizzo, and A. Calimera, “Efficacy of topology scaling
for temperature and latency constrained embedded convnets,” J. Low
Power Electron. Appl., vol. 10, no. 1, p. 10, 2020.

[16] Y. Chen, D. Jahier Pagliari, E. Macii, and M. Poncino, “Battery-aware
design exploration of scheduling policies for multi-sensor devices,” in
Proc. Great Lakes Symp. VLSI, 2018, pp. 201–206.

[17] S. Isuwa, S. Dey, A. K. Singh, and K. McDonald-Maier, “TEEM: Online
thermal- and energy-efficiency management on CPU-GPU MPSoCs,” in
Proc. Design Autom. Test Eur. Conf. Exhibit. (DATE), Florence, Italy,
2019, pp. 438–443.

[18] V. Peluso, R. G. Rizzo, and A. Calimera, “Performance profiling of
embedded convnets under thermal-aware DVFS,” Electronics, vol. 8,
no. 12, p. 1423, 2019.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 18,2021 at 10:13:17 UTC from IEEE Xplore. Restrictions apply.

T TVFS < T TS

