IWES 2021

6th Italian Workshop on Embedded Systems Rome, 9-10 December 2021

HW/SW Inference-time Optimizations for Reliable Embedded ConvNets

Roberto Giorgio Rizzo

EDA Group - PoliTo

Outline

Introduction

 ConvNets in embedded real-life scenarios: Quality and Performance challenges

Inference-time optimizations for reliable embedded ConvNets

- AdapTTA: Adaptive Test-Time Augmentation 6
 - Improve Quality (i.e., Accuracy) of embedded ConvNets in real-life use
- TVFS: Topology Voltage Frequency Scaling
 - <u>Thermal-aware performance management</u> technique for continuous inference of embedded ConvNets on low-power CPUs, under latency constraints

Introduction

ConvNets in embedded real-life scenarios

ConvNets state-of-the-arts for several tasks and apps in Computer Vision (also NLP, Time-Series)

Quality & Performance Challenges

on the field -> where the data is collected

Inference on the Edge

ConvNets in embedded real-life scenario: Quality challenges

- Input patterns collected in harsh environment might differ from those used at training time:
 - Size & orientation of the objects
 - Background
 - Lights conditions & contrast
- Model generalization capability at training-time w/ data augmentation is not always sufficient

VS.

No ConvNet fine-tuning (i.e., re-training) w/ data collected on the field

Training Data No background, vertical orientation

Misled Prediction
Inference real-life collected Data

Complex background, different orientation

Test-Time Augmentation (TTA): main features

- Improve accuracy with multiple inferences on a set of N input images altered through transforms: Geometric, Luminosity, Contrast, Blur, Channel shuffle, etc.
- Final prediction through a consensus of the aggregated predictions

TTA conceived for **GPUs**: exploit batch inference

Embedded **CPUs**: batch≈*N* proportional

	interestice fatericy (1113)						
	NVIDIA Titan Xp			ARM Cortex-A53			
ConvNet	1	5	10	1	5	10	
MobileNetV1	18.2	18.6	18.7	53.1	290.6	569.9	
MobileNetV2	12.1	12.4	12.9	44.2	261.8	513.5	
EfficientNet-B0	21.3	22.4	22.6	68.5	358.9	682.3	
EfficientNet-B1	31.9	33.4	33.9	103.4	536.4	1290.2	
			\rightarrow			\rightarrow	

 $\times 1$

Inference latency (ms)

Minimize this cost

 $\times 10$

From TTA to AdapTTA for Embedded ConvNets: main intuition

- Fixed N transformed images might bee too conservative
- For certain inputs, the key features are well exposed and easy to be detected.
- AdapTTA: a more flexible TTA mechanism exploiting intermediate results

Experimental Setup

Augmentation Policies: 5C e 10C (sota)

More redundancy, higher accuracy

- Hardware Platforms & Compiler Toolchain
 - Odroid-C2 [1]:
 - 4 Arm Cortex-A53 @ 1.5 GHz
 - 1 GB RAM
 - TFI ite v1.14
 - GNU Toolchain v6.5

TensorFlow Lite

Image Classification ConvNet Benchmaks

	ConvNet [ImageNet]	Storage [MB]	Top-1 [%]	L _{nom} [ms]
[2]	MobileNetV1 MobileNetV2	4.3	70.0	53.1
		3.4	70.8	44.2
[3]	EfficientNet-B0	5.4	74.4	68.5
	EfficientNet-B1	6.4	75.9	103.4

^[2] Tensorflow lite hosted models - https://www.tensorflow.org/lite/guide/hosted models

^[3] Tensorflow hub - https://tfhub.dev

Experimental Results

- ImageNet validation set (50k images)
- Confidence Threshold $\tau = 0.8$

Number of inferences (avg)

ConvNet	5 C	10C
MobileNetV1	2.81	4.57
MobileNetV2	3.37	6.26
EfficientNet-B0	3.57	6.75
EfficientNet-B1	3.24	6.02

More efficient Embedded TTA

- 1. Accuracy gain at inference-time
- 2. Contained latency overhead

ConvNets in embedded real-life scenarios: Performance challenges

- Deploy **continuous inference** regime with latency constraints:
 - Power demanding task: intensive workload at max. frequency
 - Embedded systems with limited Thermal Design Power (TDP),
 no room for heat spreader or active cooling

on the field

Thermal-induced performance loss

- Continuous inference of embedded ConvNets on CPUs w/ limited TDP under latency constraint (L_c)
- Intensive workload at max. frequency (VF_{max}) affects the thermal stability
 - On-chip temperature oversteps safety threshold (T_{max}) Thermal Throttling
 - To avoid irreversible damages,
 OS policy lowers core's VF (VF_{low}) until
 temperature is back to safety
- Repeated thermal throttling leads to performance penalty, thus, latency constraint mismatch

Main Idea

- Thermal-aware performance management through the cooperation of:
 - power-reduction techniques -> Voltage-Frequency Scaling (VFS)
 - algorithmic optimizations -> ConvNet Topology Scaling (TS)

Problem Formulation and Experimental Setup

Questions

Contacts:

robertogiorgio.rizzo@polito.it andrea.calimera@polito.it

References

- "AdapTTA: Adaptive Test-Time Augmentation for Reliable Embedded ConvNets".
 L. Mocerino, R. G. Rizzo, V. Peluso, A. Calimera, E. Macii; In: VLSI-SoC 2021.
- "TVFS: Topology Voltage Frequency Scaling for Reliable Embedded ConvNets".
 R. G. Rizzo, V. Peluso, A. Calimera. In: IEEE TCAS-II 68 (2), 672-676 (2020)
- "Performance profiling of embedded convnets under thermal-aware DVFS".
 V. Peluso, R. G. Rizzo, A. Calimera. In: Electronics 8 (12), 1423 (2020)
- "Efficacy of topology scaling for temperature and latency constrained embedded convnets". V. Peluso, **R. G. Rizzo**, A. Calimera. In: Journal of Low Power Electronics and Applications 10 (1), 10 (2020).

Experimental Results

Calibration set: ImageNet val (1k images)

Experimental Results

- ImageNet validation set (50k images)
- Confidence Threshold $\tau = 0.8$

Experimental Results

More stringent latency constraints

