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License & Disclaimer

This presentation is licensed under the 
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-
nc/3.0/legalcode

Ø We disclaim any warranties or representations 
as to the accuracy or completeness of this 
material.

Ø Materials are provided “as is” without 
warranty of any kind, either express or 
implied, including without limitation, 
warranties of merchantability, fitness for a 
particular purpose, and non-infringement. 

Ø Under no circumstances shall we be liable for 
any loss, damage, liability or expense incurred 
or suffered which is claimed to have resulted 
from use of this material.
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Introduction
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Ø Internet of Things (IoT) is spreading fast
Ø 8.74 billion devices in 2020 à 25.4 billions 

in 20301

Ø For optimization reasons, C language is 
widely adopted
Ø 2nd most used language in 20202

Ø Use of C makes devices vulnerable to 
binary attacks
Ø Buffer overflow, control-flow attacks

1A.Holst, “Number of Internet of Things (IoT) connected devices world-wide from 2019 to 2030.” https://www.statista.com/statistics/1183457/ iot- connected- devices- worldwide/, 2021.
2 “Interactive: The Top Programming Languages 2020 Spectrum.” https://spectrum.ieee.org/static/interactive-the-top-programming- languages- 2020, 2020. 
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Buffer Overflow

Ø Boundaries of a data buffer can be overrun and 
adjacent memory locations can be overwritten
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void insert_name()

{
char name[8];
... 
gets(name);

«Gianluca!P?0»

Return address:
0x21503F30

Execution flow 
is redirected!
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Example:
Return-Oriented Programming (ROP)
Ø Based on gadgets ending with a 

routine return instruction (RET)
Ø RET pops the return location 

from the stack and jumps there
Ø If the stack data are overflowed, 

a series of ‘’fake’’ return 
addresses can be stacked

Ø Every time a RET is executed, 
control is passed to the next 
gadget   
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Solution: Control-Flow Integrity (CFI)

Ø The program is allowed to 
follow predefined paths 
only, as stated in its 
Control-Flow Graph (CFG)
Ø Vertices: sets of non-

jumping instruction (basic 
blocks)

Ø Edges: control-flow transfers 
(jumps, calls, returns)
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CFI: State of the Art
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ONLINE MONITORCFG EXTRACTION

The application is forced to follow only 
predefined paths. The CFG must be extracted 
before runtime to correctly instruct the 
monitor

Piece of hardware or software that is 
able to ensure that flow transfers are 
consistent with the CFG

Software-based solutions Hardware-based solutions

● Static Binary Instrumentation
● Dynamic Binary Instrumentation

● Branch target encryption
● Shadow call stack
● Basic-block signature verification
● Instruction Set Architecture modification
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Problem Statement
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Ø IoT/embedded systems are too resource-constrained 
to support a complete CFG verification

Ø Protection must be limited to the points of the 
program where the risk of control-flow corruption is 
really concrete
Ø i.e., only for transfers whose destination is computed with 

data that has passed through a data memory area at risk of 
corruption
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Origin Tree and Protection Rule
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Ø The origin tree Γ! of a control-flow 
instruction located at address 𝑐 represents 
the computational history of its operand

Ø Such an instruction is said to be secure iff

∄𝑥 ∈ Γ! ∶ 𝑥 ∈ 𝑋"#

Ø where 𝑋"# is the set of non-constant 
memory locations

Ø All other branches are considered insecure
and need CFG check enforcement
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PROLEPSIS: Architecture and Features
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Ø Automatic tool for finding insecure 
points of binaries executable on ARM 
architectures

Ø Prototyped in Python
Ø Supported by Radare2 reverse 

engineering framework
Ø 5 execution stages:

1. Parsing: from binary to 
disassembly

2. Extraction: Call graph 
outlining 

3. Reconstruction: 
backward traversing to 
outline origin tree of 
branch targets

4. Recognition: classification 
of branch types

5. Instrumentation: 
insertion of custom
protecting/monitoring 
instructions
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Extraction
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Ø Track the observed software’s 
general flow traversing the 
so-called Global Call Graph

Ø Find indirect jumps
Ø On-demand graph: it does 

not create it for all functions 
in the file, but only for those 
that must be processed for 
the origin tree’s production

Ø It avoids instantiating Basic 
Block objects that will never 
be passed as not involved in 
the origin tree
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Reconstruction
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Ø Analyze the indirect jump and trace 
back its history with a recursive 
algorithm

Ø If the termination condition is not 
found in the BB of the function that 
contains the jump, it is necessary to 
generate the CFG of the caller function

Ø Every statement in the history list 
“emulates” the ARM statement, storing 
the result

Ø If the final address belongs to the data 
section, it is considered insecure

Ø The current step and the extraction 
one are strictly dependent
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Experimental Results
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Ø Prototype tested on 6 
MiBench embedded 
benchmarks

Ø 100 run per benchmark
Ø As a reference protection, 

used a 6-instructions-per-
branch instrumentation

Ø Overhead never exceeds 
4%
Ø Better than many reference 

studies2

2C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou, “Practical control flow integrity and randomization for binary executables”, 2013.
J. Tan, H. J. Tay, U. Drolia, R. Gandhi, and P. Narasimhan, “Pcfire: Towards provable preventative control-flow integrity enforcement for realistic embedded software”, 2016.
T. Nyman, J. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware- supported call and return enforcement for commercial microcontrollers” 2017.
R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-flow integrity for real-time embedded systems” 2019.
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Conclusions
19

Ø Pros: 
Ø Nominal overhead lower than most of the CFI techniques
Ø Possibility to customize the protection technique (hardware or 

software monitor, custom additional instructions, …)
Ø Cons:

Ø Not a complete defense tool itself (you need a CFI monitoring facility)
Ø Only for ARM executable binaries

Ø Efforts needed to gather more accurate data to measure 
actual benefits in terms of overhead with respect to real-
world applications
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