
PROLEPSIS
Binary Analysis and Instrumentation of IoT

Software for Control-Flow Integrity

IWES 2021 – 10/12/2021 – Roma

Nicolò MAUNERO
nicolo.maunero@polito.it

Gianluca ROASCIO
gianluca.roascio@polito.it

© CINI – 2021

License & Disclaimer

This presentation is licensed under the
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-
nc/3.0/legalcode

Ø We disclaim any warranties or representations
as to the accuracy or completeness of this
material.

Ø Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

Ø Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
or suffered which is claimed to have resulted
from use of this material.

License Information Disclaimer
2

© CINI – 2021

Acknowledgments

The work has been supported by:

CINI Cybersecurity National Lab
https://cybersecnatlab.it/

3

© CINI – 2021

Acknowledgments

The work has been supported by:

European Union’s Horizon 2020 research and
innovation programme under grant agreement No.
830892, project SPARTA.
https://www.sparta.eu

Blu5 Labs Ltd. (Malta)
https://www.blu5group.com

4

© CINI – 2021

Outline

Ø Introduction
Ø Our Contribution
Ø Experimental Results
Ø Conclusions and Future Work

5

© CINI – 2021

Outline

Ø Introduction
Ø Our Contribution
Ø Experimental Results
Ø Conclusions and Future Work

6

© CINI – 2021

Introduction
7

Ø Internet of Things (IoT) is spreading fast
Ø 8.74 billion devices in 2020 à 25.4 billions

in 20301

Ø For optimization reasons, C language is
widely adopted
Ø 2nd most used language in 20202

Ø Use of C makes devices vulnerable to
binary attacks
Ø Buffer overflow, control-flow attacks

1A.Holst, “Number of Internet of Things (IoT) connected devices world-wide from 2019 to 2030.” https://www.statista.com/statistics/1183457/ iot- connected- devices- worldwide/, 2021.
2 “Interactive: The Top Programming Languages 2020 Spectrum.” https://spectrum.ieee.org/static/interactive-the-top-programming- languages- 2020, 2020.

© CINI – 2021

Buffer Overflow

Ø Boundaries of a data buffer can be overrun and
adjacent memory locations can be overwritten

8

void insert_name()

{
char name[8];
...
gets(name);

«Gianluca!P?0»

Return address:
0x21503F30

Execution flow
is redirected!

© CINI – 2021

Example:
Return-Oriented Programming (ROP)
Ø Based on gadgets ending with a

routine return instruction (RET)
Ø RET pops the return location

from the stack and jumps there
Ø If the stack data are overflowed,

a series of ‘’fake’’ return
addresses can be stacked

Ø Every time a RET is executed,
control is passed to the next
gadget

9

© CINI – 2021

Solution: Control-Flow Integrity (CFI)

Ø The program is allowed to
follow predefined paths
only, as stated in its
Control-Flow Graph (CFG)
Ø Vertices: sets of non-

jumping instruction (basic
blocks)

Ø Edges: control-flow transfers
(jumps, calls, returns)

10

© CINI – 2021

CFI: State of the Art
11

ONLINE MONITORCFG EXTRACTION

The application is forced to follow only
predefined paths. The CFG must be extracted
before runtime to correctly instruct the
monitor

Piece of hardware or software that is
able to ensure that flow transfers are
consistent with the CFG

Software-based solutions Hardware-based solutions

● Static Binary Instrumentation
● Dynamic Binary Instrumentation

● Branch target encryption
● Shadow call stack
● Basic-block signature verification
● Instruction Set Architecture modification

© CINI – 2021

Outline

Ø Introduction
Ø Our Contribution
Ø Experimental Results
Ø Conclusions and Future Work

12

© CINI – 2021

Problem Statement
13

Ø IoT/embedded systems are too resource-constrained
to support a complete CFG verification

Ø Protection must be limited to the points of the
program where the risk of control-flow corruption is
really concrete
Ø i.e., only for transfers whose destination is computed with

data that has passed through a data memory area at risk of
corruption

© CINI – 2021

Origin Tree and Protection Rule
14

Ø The origin tree Γ! of a control-flow
instruction located at address 𝑐 represents
the computational history of its operand

Ø Such an instruction is said to be secure iff

∄𝑥 ∈ Γ! ∶ 𝑥 ∈ 𝑋"#

Ø where 𝑋"# is the set of non-constant
memory locations

Ø All other branches are considered insecure
and need CFG check enforcement

© CINI – 2021

PROLEPSIS: Architecture and Features
15

Ø Automatic tool for finding insecure
points of binaries executable on ARM
architectures

Ø Prototyped in Python
Ø Supported by Radare2 reverse

engineering framework
Ø 5 execution stages:

1. Parsing: from binary to
disassembly

2. Extraction: Call graph
outlining

3. Reconstruction:
backward traversing to
outline origin tree of
branch targets

4. Recognition: classification
of branch types

5. Instrumentation:
insertion of custom
protecting/monitoring
instructions

© CINI – 2021

Extraction
16

Ø Track the observed software’s
general flow traversing the
so-called Global Call Graph

Ø Find indirect jumps
Ø On-demand graph: it does

not create it for all functions
in the file, but only for those
that must be processed for
the origin tree’s production

Ø It avoids instantiating Basic
Block objects that will never
be passed as not involved in
the origin tree

© CINI – 2021

Reconstruction
17

Ø Analyze the indirect jump and trace
back its history with a recursive
algorithm

Ø If the termination condition is not
found in the BB of the function that
contains the jump, it is necessary to
generate the CFG of the caller function

Ø Every statement in the history list
“emulates” the ARM statement, storing
the result

Ø If the final address belongs to the data
section, it is considered insecure

Ø The current step and the extraction
one are strictly dependent

© CINI – 2021

Experimental Results
18

Ø Prototype tested on 6
MiBench embedded
benchmarks

Ø 100 run per benchmark
Ø As a reference protection,

used a 6-instructions-per-
branch instrumentation

Ø Overhead never exceeds
4%
Ø Better than many reference

studies2

2C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou, “Practical control flow integrity and randomization for binary executables”, 2013.
J. Tan, H. J. Tay, U. Drolia, R. Gandhi, and P. Narasimhan, “Pcfire: Towards provable preventative control-flow integrity enforcement for realistic embedded software”, 2016.
T. Nyman, J. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware- supported call and return enforcement for commercial microcontrollers” 2017.
R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-flow integrity for real-time embedded systems” 2019.

© CINI – 2021

Conclusions
19

Ø Pros:
Ø Nominal overhead lower than most of the CFI techniques
Ø Possibility to customize the protection technique (hardware or

software monitor, custom additional instructions, …)
Ø Cons:

Ø Not a complete defense tool itself (you need a CFI monitoring facility)
Ø Only for ARM executable binaries

Ø Efforts needed to gather more accurate data to measure
actual benefits in terms of overhead with respect to real-
world applications

Thanks for your attention!

