
The Role of Static Program Analysis

in Functional Safety

Roberto Bagnara, Abramo Bagnara, Patricia M. Hill

http://bugseng.com

& Applied Formal Methods Laboratory
University of Parma, Italy

IWES 2021 — 6th Italian Workshop on Embedded Systems
Rome, December 10th, 2021

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

http://bugseng.com

Outline I

1 Static Analysis

2 Static Analysis, ISO 26262, and EN 50128

3 Checking System Decomposition by Static Analysis

4 Conclusion

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis

Static vs Dynamic Program Analysis

Static Program Analysis

The automated analysis of computer software that is performed
without actually executing programs

It comprises a number of (not disjoint) techniques, including:

AST visits

Control-flow analysis

Data-flow analyis

Model checking

Abstract interpretation

Model checking

Symbolic execution

Deductive methods

. . .

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Static Analysis and ISO 26262

Static analysis can be used to comply with several of the objectives
of ISO 26262:

Part 6 “Product development at the software level”

Part 9 “Automotive safety integrity level (ASIL)-oriented and
safety-oriented analyses”

Static analyzers also have a role in achieving the objectives (and,
in turn, will have to comply with the prescriptions) of

Part 8 “Supporting processes”, Section 11 “Confidence in the
use of software tools”

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Static Analysis and EN 50128

Static analysis is at the basis of several techniques/measures of
EN 50128:

Software Architecture (7.3)

Software Design and Implementation (7.4)

Verification and Testing (6.2 and 7.3)

Common Cause Failure Analysis (D.9)

Static analyzers also have a role in achieving the objectives (and,
in turn, will have to comply with the prescriptions) of

Section 6.7 “Support tools and languages”

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Table 1 — Topics to be covered by modelling and coding

guidelines

Topics
ASIL

S.A.
A B C D

1a Enforcement of low complexity ++ ++ ++ ++ X

1b Use of language subsets ++ ++ ++ ++ X

1c Enforcement of strong typing ++ ++ ++ ++ X

1d Use of defensive implementation
techniques

+ + ++ ++ X

1e Use of well-trusted design
principles

+ + ++ ++ X

1f Use of unambiguous graphical
representation

+ ++ ++ ++ –

1g Use of style guides + ++ ++ ++ X

1h Use of naming conventions ++ ++ ++ ++ X

1i Concurrency aspects + + + + –

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Table 3 — Principles for software architectural design

Methods
ASIL

S.A.
A B C D

1a Appropriate hierarchical structure
of software components

++ ++ ++ ++ X

1b Restricted size and complexity of
software components

++ ++ ++ ++ X

1c Restricted size of interfaces + + + ++ X

1d Strong cohesion within each
software component

+ ++ ++ ++ X

1e Loose coupling between software
components

+ ++ ++ ++ X

1f Appropriate scheduling properties ++ ++ ++ ++ –
1g Restricted use of interrupts + + + ++ –
1h Appropriate spatial isolation of

the software components
+ + + ++ –

1i Appropriate management of
shared resources

++ ++ ++ ++ X

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Table 6 — Design principles for software unit design and

implementation

Methods
ASIL

S.A.
A B C D

1a One entry and one exit point in
subprograms and functions

++ ++ ++ ++ X

1b No dynamic objects or variables,
or else online test during their
creation

+ ++ ++ ++ X

1c Initialization of variables ++ ++ ++ ++ X

1d No multiple use of variable names ++ ++ ++ ++ X

1e Avoid global variables or else
justify their usage

+ + ++ ++ X

1f Limited use of pointers + ++ ++ ++ X

1g No implicit type conversions + ++ ++ ++ X

1h No hidden data flow or control
flow

+ ++ ++ ++ X

1i No unconditional jumps ++ ++ ++ ++ X

1j No recursions + + ++ ++ X

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Table A.4 — Software Design and Implementation

TECHNIQUE/MEASURE
SIL

S.A.
0 1 2 3 4

Formal Methods - R R HR HR –
Modelling R HR HR HR HR –
Structured methodology R HR HR HR HR X

Modular Approach HR M M M M X

Components HR HR HR HR HR X

Design and Coding Standards HR HR HR M M X

Analysable Programs HR HR HR HR HR X

Strongly Typed Programming
Language

R HR HR HR HR X

Structured Programming R HR HR HR HR X

Programming Language R HR HR HR HR X

Language Subset - - - HR HR X

Object Oriented Programming R R R R R X

Procedural programming R HR HR HR HR X

Metaprogramming R R R R R X

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Table A.12 — Coding Standards

TECHNIQUE/MEASURE
SIL

S.A.
0 1 2 3 4

Coding Standard HR HR HR M M X

Coding Style Guide HR HR HR HR HR X

No Dynamic Objects - R R HR HR X

No Dynamic Variables - R R HR HR X

Limited Use of Pointers - R R R R X

Limited Use of Recursion - R R HR HR X

No Unconditional Jumps - HR HR HR HR X

Limited size and complexity of
Functions, Subroutines and
Methods

HR HR HR HR HR X

Entry/Exit Point strategy for
Functions,

R HR HR HR HR X

Limited number of subroutine
parameters

R R R R R X

Limited use of Global Variables HR HR HR M M X

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

ISO 26262 Concept: Cascading Failure

A cascading failure (CF) is a failure that causes an element to fail,
which in turn causes a failure in another element

(Image courtesy of Medium)

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

ISO 26262 and EN 50128 Concept: Common Cause Failure

A common cause failure (CCF) is the failure of two or more
elements resulting directly from a single specific event (root cause)

(Image courtesy of CleverTap)

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

ISO 26262 Concepts: Dependent Failure

A dependent failures (DF) is either a cascading failure or a
common cause failure (and nothing else)

The union of CFs and CCFs gives DFs

DFs = CFs ∪ CCFs

In other words, failures A and B are DFs if they are not
statistically independent:

P(A ∩ B) 6= P(A) · P(B)

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

ISO 26262 Concepts: Freedom From Interference and

Independence

Freedom From Interference (FFI) is the absence of cascading
failures (CFs) between two or more elements that could lead to the
violation of a safety requirement

Independence is the absence of dependent failures (DFs) between
two or more elements that could lead to the violation of a safety
requirement

As CFs are a subset of DFs, FFI is instrumental in achieving
independence

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Note: No Mention of ASIL Yet!

Q: Why haven’t we mention Automotive Safety Integrity Levels
(ASILs) yet?

A: Because freedom from interference and independence are
ASIL-independent concepts

ASILs come into play when considering the applications of these
concepts in ISO 26262

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Freedom From Interference and Independence: What For?

Achievement of independence or freedom from interference
between the software architectural elements can be required
because of:

1 the application of an ASIL decomposition at the software level

independent elements with lower ASIL implementing
an element addressing a safety goal with higher ASIL

2 the implementation of software safety requirements

e.g., independence between the monitored element
and the monitor

3 required coexistence of the software architectural elements

e.g., functions implementing different architectural
elements within the same program must not
interfere with each other

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Coexistence of Elements

ISO 26262 Part 9 gives criteria for coexistence of elements

When coexistence is required there are two options:

1 All coexisting sub-elements are developed in accordance to the
highest ASIL applicable to the sub-elements: expensive!

2 Absence of interference between the sub-elements has to be
demonstrated

Absence of interference means:

there are no CFs from a sub-element with no ASIL
assigned (QM), or a lower ASIL assigned, to a
sub-element with a higher ASIL assigned, such that these
CFs lead to the violation of a safety requirement of the
element

In a sense, absence of interference is a weak form of FFI

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Independence in EN 50128

EN 50128, Section 7.3.4.9

Where the software consists of components of different software
safety integrity levels then all of the software components shall be
treated as belonging to the highest of these levels unless there is
evidence of independence between the higher software safety
integrity level components and the lower software safety integrity
level components. This evidence shall be recorded in the Software
Architecture Specification.

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Static Analysis, ISO 26262, and EN 50128

Freedom From Interference in ISO 26262

Must be developed and evaluated taking into account faults
concerning:

timing and execution

memory

exchange of information

For ASIL D, software partitioning must be supported by dedicated
hardware features or equivalent

An MPU is typically used for this purpose; however, this can only
enforce partitioning of memory areas and SoC peripherals, other
measures are required in order to ensure freedom of interference

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

How Can Static Analysis Help?

Compliance to the MISRA guidelines reduces the risk of execution
blocking due to unexpected excessive loop iterations (timing and
execution) as well as of stack overflow (memory)

Static analysis is also instrumental in checking system
decomposition!

1 Checking dynamic/run-time dependencies, by tracking:

functions/methods actions: call
pointer variables actions: pointee read or write
other variables actions: read or write
structure fields actions: read or write

2 Checking static/compile-time dependencies, by tracking:

files actions: include
macros actions: expand (with finer control on the

expanded macro)

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

ISO “Open System Interconnect” Model

(Image courtesy of Jürgen Foag)

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

Checking System Decomposition: How? When?

Once you have decomposed your system and designed the allowed
interactions between components, how do you check that the
implementation complies to this aspect of the design?

By hand: time consuming, error prone. . . , all multiplied by the
number of times you need to redo the check

checking only at the end is asking for trouble

By static analysis: some little time to encode the decomposition
into a configuration, then the check is completely automatic and
reliable

can be part of your continuous integration processes

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

Example: Simplified OSI Model

An application software program needs to use the services of a
network stack

The network stack has three components corresponding to OSI
layers, identified by DATA_LINK, NETWORK and TRANSPORT

We want to make sure the network layers are not bypassed

E.g. if the DATA_LINK component is accessed bypassing the
NETWORK component, then a packet that cannot be routed may be
built

In order to add interest, we want to allow an exception: the
APPLICATION component may call the link_status() function in
DATA_LINK

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

OSI Example: Component Entities

In this example, we only consider variables and functions with
external linkage in user code (not system code):

-config=B.PROJORG,all_component_entities+=

"linkage(external)

&&kind(var||function)

&&all_decl(loc(top(file(kind(user||main_file)))))"

In order to save typing, we exploit the fact that we used a proper
(MISRA compliant) header file discipline:

-config=B.PROJORG,component_entities+=

{"DATA_LINK/Except",content,"^link_status\\(.*$"},

{DATA_LINK,content,"any_decl(loc(top(file(^dl\\.h$))))"},

{NETWORK,content,"any_decl(loc(top(file(^nl\\.h$))))"},

{TRANSPORT,content,"any_decl(loc(top(file(^tl\\.h$))))"},

{APPLICATION,content,"^main\\(.*$"}

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

OSI Example: Component Files

In addition to checking dynamic/run-time dependency, we may
check static/compile-time dependency, such as header file inclusion

To do this, we need first to assign source files to components:

-config=B.PROJORG,component_files+=

{"DATA_LINK/Except","^dl\\.h$"},

{DATA_LINK,"^dl\\.c$"},

{NETWORK,"^nl\\.[ch]$"},

{TRANSPORT,"^tl\\.[ch]$"},

{APPLICATION,"^main\\.c$"},

{"","kind(main_file||user)"}

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

OSI Example: The over Relation

We define a relation between components called over, meaning
directly above in the OSI model:

-config=B.PROJORG,component_relation+=

{APPLICATION, over, TRANSPORT},

{TRANSPORT, over, NETWORK},

{NETWORK, over, DATA_LINK}

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Checking System Decomposition by Static Analysis

OSI Example: Permissions

Entities in component A may include and call entities in
component B if A is over B :

-config=B.PROJORG,component_allows+=

"rel(over)&&action(include||call)"

As an exception, the APPLICATION component may call the
link_status() function and include DATA_LINK’s header file:

-config=B.PROJORG,component_allows+=

"from(APPLICATION)

&&to(DATA_LINK/Except)&&action(include||call)"

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

Conclusion

Conclusion

Static analysis plays an important role in achieving the objectives
of ISO 26262 and EN 50128

We gave a brief (approximate and incomplete) introduction to the
ISO 26262 notions dependence, freedom from interference and
absence of interference

We have shown how the ability to strictly control the interactions
of software components by static analysis is instrumental in
gathering the required evidence in a reliable way

We did not have time to highlight other important applications of
static analysis in the context of ISO 26262 and EN 50128

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

✶✿

Conclusion

The End

roberto.bagnara@unipr.it

info@bugseng.com

R. Bagnara, A. Bagnara, P. M. Hill The Role of Static Program Analysis in Functional Safety

roberto.bagnara@unipr.it
info@bugseng.com

	Static Analysis
	Static Analysis, ISO 26262, and EN 50128
	Checking System Decomposition by Static Analysis
	Conclusion

