A cycle-accurate methodology to improve PREM-like memory bandwidth underutilization on FPGA-based HeSoCs

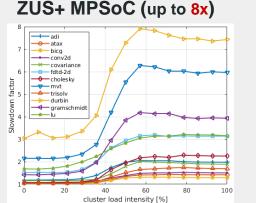
Gianluca Brilli^{*}, Giacomo Valente⁺, Alessandro Capotondi^{*}, Tania di Mascio⁺, Paolo Burgio^{*}, Paolo Valente^{*} and Andrea Marongiu^{*}

IWES, 2021

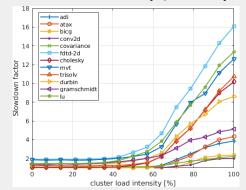
*University of Modena and Reggio Emilia, <name>.<surname>@unimore.it *University of L'Aquila, <name>.<surname>@univaq.it

FRACTAL

EDGE



Fondo di Ateneo per la Ricerca FAR2020



Motivations (1)

 As the number of engine grows on next generation of HeSoCs, the interference due to shared interconnects and main memory hampers tasks' execution time.

Versal ACAP (up to 16x)

G. Brilli, A. Capotondi, P. Burgio and A. Marongiu, *Understanding and Mitigating Memory Interference in FPGAbased HeSoCs*, 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.

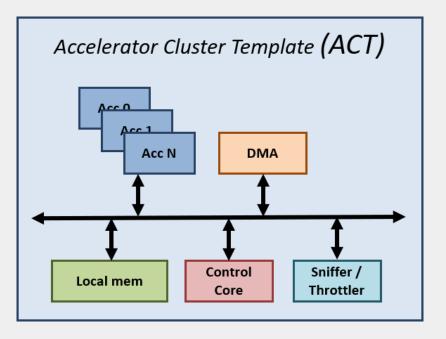
Motivations (2)

- Available **memory bandwidth regulation** mechanisms are:
 - Too Loosely-coupled and Coarse-grained from the actuation & monitoring point of view;
 - or are **platform-specific.**

Contributions

- Runtime Bandwidth Regulator (RBR)
 - Tightly-coupled monitoring & throttling;
 - Minimal timing overhead (1 clock);
 - High precision QoS regulation.
 - Evaluation on Xilinx Zynq UltraScale+ MPSoC

• This work is currently under-submission! Can't be disclosed.


Background

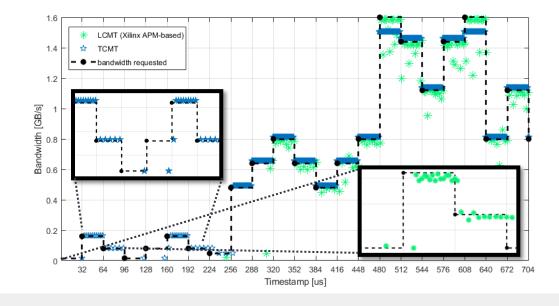
- Some examples:
 - NVIDIA Xavier;
 - Xilinx Zynq UltraSCALE+;
 - Xilinx Versal.
- HeSoC is a new emerging trend.

The proposed mechanism

- Control Core: Tightly-coupled with DMA and Sniffer/Throttler.
 - Set the amount of bandwidth the DMA can use (CLI).
- **DMA**: performs **controlled** memory transactions.
- Sniffer/Throttler: constantly monitors the DMA activity and regulates DMA transactions.

Experimental Results (1)

• **Exp1** – Tightly-coupled versus Loosely-coupled Monitoring and Throttling.


• Objective:

- Test the ability of our system to follow a **bandwidth profile** (eg. provided by a system scheduler).
- Compared with Loosely-coupled solutions on a Xilinx Zynq UltraScale+ MPSoC
 - based on Xilinx AXI Performance Monitor (APM).

Experimental Results (2)

• Exp1 – Tightly-coupled versus Loosely-coupled Monitoring and Throttling.

- Black dashed line: bandwidth profile (e.g. system scheduler);
- Blue: our TC solution.
- Green: LC solution based on APM.

Experimental Results (3)

• **Exp1** – Tightly-coupled versus Loosely-coupled Monitoring and Throttling.

• Results:

- Our Tightly-Coupled solution (TCMT), follows a bandwidth profile with 32µs of period;
- Platform-dependent Loosely-Coupled solutions (LCMT), need a slower scheduling tick, at least 384µs of period.
- **12x** of improvement compared to Zynq UltraScale+ solutions.

Experimental Results (4)

• **Exp2** – QoS for Memory Interference Mitigation.

• Objective:

 Test the ability of our system to mitigate memory interference on Heterogeneous System (Xilinx ZUS+);

Experimental Results (5)

Exp2 – QoS for Memory Interference Mitigation.

Exp-Setup:

- 3 ACT performing **controlled** memory reads;
- Real applications on APU & RPU.
- All the actors must meet deadlines (except ACT3 which is Best Effort)

Scenarios:

- Very Tight (VT): max 20% of tolerated slowdown
- Tight (T):
- Medium (M):

- max 40% of tolerated slowdown
- max 60% of tolerated slowdown

Experimental Results (6)

• **Exp2** – QoS for Memory Interference Mitigation.

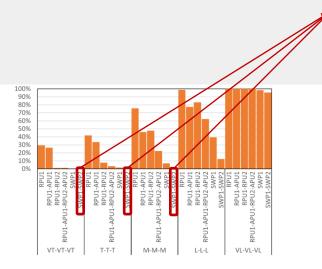
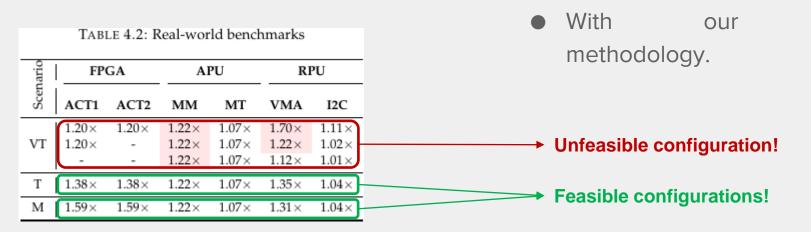


Figure 11 Ratio of accepted QoS setups with uniform thresholds for Workload 1.

Unfeasible configurations!


With ZUS+ QoS ecosystem.

Serrano-Cases, Alejandro, Juan M. Reina, Jaume Abella, Enrico Mezzetti and Francisco J. Cazorla. *Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC*, ECRTS 2021.

Experimental Results (7)

• **Exp2** – QoS for Memory Interference Mitigation.

Conclusion

- We introduced a **fine-grained QoS control** via **tightly-coupled bandwidth monitoring and regulation**.
 - 12x faster than loosely-coupled bandwidth regulation mechanisms of the Zynq UltraScale+ MPSoC;
 - Our mechanism is more accurate than ZUS+ based QoS ecosystem.

Thank you! Gianluca Brilli

High-Performance Real-Time Lab