HEORES Inspiring excellence in worldwide technologies

IWES 2021

Autogeneration of code for Middleware: benefits of Model Based Design approach

Eugenio Romeo Giuseppe Sorrentino Michele Settembrino Paolo Bizzarri eugenio.romeo@teoresigroup.com giuseppe.sorrentino@teoresigroup.com michele.settembrino@teoresigroup.com paolo.bizzarri@teoresigroup.com

Job Teoresi - job@teoresigroup.com

Agenda

00	Introduction
01	Architecture
02	Workflow
03	Example: Rx CAN Frame
04	ISO-26262: Qualification Tools
05	Teoresi: Company profile

Introduction ႏွ \bigcirc

0000

↑

Θ

8

RR

Introduction Model Based Design

The **MBD** approach is usually applied to the development of **Application SW Components** (control logics, monitoring, diagnostics, recovery), while, traditionally, the development of the other SW layers is *hand-coded*.

Todays' increasing demand of safety trusted SW deeply impacts on the development process in order to be compliant with **Safety Standards**, hence with **coding guidelines**, **coverage** and **traceability requirements for all SW layers**.

Introduction MBD AND THE V-MODEL

°0

 \bigcirc

0000

↑

Θ

8

RR

CODE GENERATION FOR MIDDLE SW LAYER

1. Architecture ISO/OSI COMPARISON

1. Architecture AUTOSAR COMPARISON

1. Architecture AUTOSAR COMPARISON

1. Architecture AUTOSAR COMPARISON

ASW ASW ASW ASW Component 3 Component 1 Component 2 RTE Communication I/O Hardware **Services** Abstraction Hardware **Communication Manager** Abstract. Communication Hardware Abstraction Communication I/O Drivers **Drivers** Communication Hardware I/O Driver Driver μC

MIDDLEWARE COMPONENTS

MIDDLEWARE COMPONENTS: CAN

CMCRX

Communication Manager CAN Receive

This module is responsible for:

- Scheduling of CAN frames processing;
- PDU info gathering;
- Frame data-field unpack (single and multi-packet);
- Data integrity verification (Checksum, CRC, range check);
- Time-out management;
- Recovery;
- Broadcast to ASW.

смстх

Communication Manager CAN Transmit

This module is responsible for:

- Packaging of ASW variables in frame data-field (single and multi-packet);
- Recovery;
- Data encryption for integrity checks (Checksum, CRC);
- PDU info update;
- Enabling/disabling of CAN frames transmission.

MIDDLEWARE COMPONENTS: LIN

CMLRX

Communication Manager LIN Receive

This module is responsible for:

- Scheduling of LIN frames processing;
- PDU info gathering;
- Frame data-field unpack;
- Data integrity verification (Checksum, CRC, range check);
- Time-out management;
- Recovery;
- Broadcast to ASW.

CMLTX

Communication Manager LIN Transmit

This module is responsible for:

- Packaging of ASW variables in frame data-field;
- Recovery;
- Data encryption for integrity checks (Checksum, CRC);
- PDU info update;
- Enabling/disabling of LIN frames transmission.

MIDDLEWARE COMPONENTS: HW

HWMI

Hardware Manager Input

This module is responsible for:

- Conversion of the acquired analog and digital input signals;
- Broadcast to ASW.

нумо

Hardware Manager Output

This module is responsible for:

- ASW variables conversion;
- Output of Digital, PWM and H-Bridge signals to control actuators and motors.

ŝÔ \bigcirc

0000

↑

Θ

 \subset

00

RR

PROCESS STEPS AND ARTEFACTS

DATA SHEET CONTENT: INTERFACE DEFINITION

The starting point for the development process is an excel file which includes a detailed description of the communication manager interface and the ECU hardwired interface.

High level information are collected in the following files:

- Ifc_ComRx.xlsx/Ifc_ComTx.xlsx CAN and LIN frames info, including detailed description of variables in the data section of each frame;
- Ifc_HWIn.xlsx/Ifc_HWOut.xlsx Pinout-based description of all input and output signals (ADC, PWM, DIO).

	A B		С	D	E	
1	BUS_Type 💌	BUS_Name 💌	PDU_ID 🔻	PDU_IDOnBus 💌	PDU_Name 💌	PD
2	CAN	PWTDB	1	0xC00003A	TSC1_3A	So
3	CAN	PWTDB	2	0xC0000B2	TSC1_B2	So
4						
				_		

PDU Info

	А	В	с	D	E
1	PDU_Name 💌	DATA_SWVarNameArr	DATA_SWVarDescription	DATA_StartBitArr	DATA_LengthAr
2	TSC1_3A	ComRx_stTSC13AEngOcm_u8	Source node: RADAR. J1939-71, PGN 0, SPN 695.	0	2
3	TSC1_3A	ComRx_stTSC13AOcmPrio_u8	Source node: RADAR. J1939-71, PGN 0, SPN 897.	4	2
4	TSC1_3A	ComRx_pcTSC13AEngTrqLim_fx8	Source node: RADAR. J1939-71, PGN 0, SPN 518.	24	8
5	TSC1_3A	ComRx_stTSC13ATransmRate_u8	Source node: RADAR. J1939-71, PGN 0, SPN 3349.	32	3
6	TSC1_3A	ComRx_stTSC13ACtrlPurp_u8	Source node: RADAR. J1939-71, PGN 0, SPN 3350.	35	5
7	TSC1_3A	ComRx_pcTSC13AEngTrqLimHR_fx8	Source node: RADAR. J1939-71, PGN 0, SPN 4191.	40	4
8	TSC1_3A	ComRx_stTSC13AMsgCnt_u8	Source node: RADAR. J1939-71, PGN 0, SPN 4206.	56	4
9	TSC1_3A	ComRx_stTSC13AMsgCks_u8	Source node: RADAR. J1939-71, PGN 0, SPN 4207.	60	4
10	TSC1_B2	ComRx_stTSC1B2EngOcm_u8	Source node: ABS. J1939-71, PGN 0, SPN 695.	0	2
11	TSC1_B2	ComRx_stTSC1B2OcmPrio_u8	Source node: ABS. J1939-71, PGN 0, SPN 897.	4	2
12	TSC1_B2	ComRx_pcTSC1B2EngTrqLim_fx8	Source node: ABS. J1939-71, PGN 0, SPN 518.	24	8
13	TSC1_B2	ComRx_stTSC1B2MsgCnt_u8	Source node: ABS. J1939-71, PGN 0, SPN 4206.	56	4
14	TSC1_B2	ComRx_stTSC1B2MsgCks_u8	Source node: ABS. J1939-71, PGN 0, SPN 4207.	60	4
15					

DATA Specification

MATLAB: AUTOMATION SCRIPTS

At this step the goal is to produce the models and the related data dictionaries via an automatic process. To achieve this task, we developed several scripts, functions and libraries (for block-diagram, simulation and code generation).

The development was carried out according to:

- modularity
- repeatability
- portability

In the next slide the hierarchical structure of the automation tool is displayed.

libraries	
block_diagram	
🖻 MWR.slx	
codegen_target	
🖻 mwri_codegen.c	
🖸 mwri_codegen.h	
c mwro_codegen.c	
໔mwro_codegen.h 🗉	script
simulation_targe ⊑	<pre>model_automation</pre>
<pre>c mwri_simulatior</pre>	🗉 📊 utilities
<pre>c mwri_simulatior</pre>	🖄 CreateMWR.m
<pre>c mwro_simulatior</pre>	🖄 CreateMWRI.m
<pre>c mwro_simulatior</pre>	🖄 CreateMWRIDataDictionary.m
	🖄 CreateMWRIModel.m
	🖄 CreateMWRO.m
	🖄 CreateMWRODataDictionary.m
	🖄 CreateMWROModel.m
	🖄 GenerateMWRICode.m
	🕅 GenerateMWROCode m

MATLAB: AUTOMATION SCRIPTS

SIMULINK: MODELS AND DATA DICTIONARIES

After the automation process, models and data dictionaries are ready to be used for simulation, code-generation and safety verification.

The models have been configured in compliance with the following standards:

- Safety (ISO-26262)
- MISRA C: 2012 guidelines
- Traceability
- Polyspace

SIMULINK: MODELS' HIERARCHY

Models

Each model communicates with basic software via dedicated API's in order to get raw data from buses and I/O pins.

In case of timeout or range check failure raw data are replaced with recovery values before being broadcasted to application layer for what concern MWRI, to basic software for what concern MWRO.

SIMULINK: CODE GENERATION

The code generation objective for **safety precaution** deeply impacts on the automatic code optimization carried out by Simulink Coder and Embedded Coder. A large number of "optimizable", hence *"unnecessary"*, variables are generated.

So, an important part of the Embedded Coder Dictionary configuration consists of defining custom storage classes and custom memory sections: we have been able to automatically manage memory allocation for model internal variables and calibrable parameters.

In the definition of a memory section, basing on the interface with basic software, we defined all the statements to be used for memory allocation (pre-compiling directives) and also the way the related variables should have been grouped (i.e. group per data-type for compact data allocation).

Code Mappings - C									@ += ×		
Data Defaults Function Defaults	Functions										
								Filter conte	ante		
	A Embedded Cod	er Diction	ary: MWRI_model							- 0	
M	DICTIONARY										중 ?
→ Inports		ŵ									
> Outports											
Model parameters	Add Duplicate K	emove	Packages Model								
Model parameter arguments	EDIT		MANAGE MODEL						1		
External parameter objects	Storage Classes	Func	tion Customization	Templates Memo	ry Sections			0	PROPERTY INSPECT	OR	0
Shared local data stores	Name	Data A	Data S	Header File	Storage T	Data In	Memory Sec	Source	Name	ExportToFile_MWRI	^
Global data stores	ExportedGlobal	Direct	Exported		Unstructured	Auto	None	Built-in	Description	/* ExportToFile_VMU stora class*/	ige
	ImportedExtern	Direct	Imported		Unstructured	Auto		Built-in			
V Internal data	ImportedExternPointer	Pointer	Imported		Unstructured	Auto		Built-in	Source	MWRI_model	
Constants	BitField	Direct	Exported		FlatStructure	Auto	None	Simulink package	Data Access	Direct	•
	Const	Direct	Exported	<instance specific=""></instance>	Unstructured	Auto	MemConst	Simulink package	File Placement		
	Volatile	Direct	Exported	<instance specific=""></instance>	Unstructured	Auto	MemVolatile	Simulink package	Data Scope	Exported	
	ConstVolatile	Direct	Exported	<instance specific=""></instance>	Unstructured	Auto	MemConstVolatile	Simulink package	Definition File	SR_internalVariables_32bit	it c
	Define	Direct	Exported	<instance specific=""></instance>	Unstructured	Macro	None	Simulink package	Storage	pro_momanda.co_ocom	
	ImportedDefine	Direct	Imported	<instance specific=""></instance>	Unstructured	Macro		Simulink package	Use different prope	rty settings for single-instance	e
	ExportToFile	Direct	Exported	<instance specific=""></instance>	Unstructured	Auto	None	Simulink package	and multi-instance	data	_
	ImportFromFile	Direct	Imported	<instance specific=""></instance>	Unstructured	Auto		Simulink package	Storage Type	Structured	-
	FileScope	Direct	File		Unstructured	Auto	None	Simulink package	Data Initialization	Dynamic	-
	Localizable	Direct	Auto		Unstructured	Auto	None	Simulink package	Memory Section	MemExportToFile MWRI	•
	Struct	Direct	Exported		FlatStructure	Auto	None	Simulink package	Preserve array dim	ensions	
	GetSet	Direct	Imported	<instance specific=""></instance>		Auto		Simulink package	Qualifiers		
	CompilerFlag	Direct	Imported	<inatance specifics<="" td=""><td>Unstructured</td><td>Macro</td><td></td><td>Simulink package</td><td>Allowed Usage</td><td></td><td></td></inatance>	Unstructured	Macro		Simulink package	Allowed Usage		
	Daugabla	Direct	<pre>imported</pre>	clostance enecifica	Unstructured	Dunamic	None	Simulink package	Parameters		
		Direct	Exported	SD internal/ariable	Structured	Dynamic	MemExportToFile	MWRI model	Signals		
	ExportToFile_MWR0	Direct	Exported	SR_internalVariable	Structured	Dynamic	MemExportToFile	MWPI model			
	Exportion ne_wiveco	Direct	Exponed	SR_Internalvallable	Structureu	Dynamic	wentexport of ne	a model			
	PSEUDOCODE PR	EVIEW						0			
	For single-instance	e data	For multi-instance of	data							
	Type definition: typedef str FIELDTY	ruct { PE FIELL	DNAME;								
	} ExportToF	ile_MWR	I_struct;								
	Declaration: export /* ExportTo	rted throu File_MW	gh file: <i>"MWRL_mode</i> RI data definito	el_internalVariables_ n */	32bit.h"			•			-

စ္ပဝ

 \bigcirc

0000

↑

Θ

8

RR

Teoresi Group | Autogeneration of code for middleware: benefits of Model Based Design approach

3. Example: Rx CAN Frame

Modelling Standards

Thanks to the repeatability of the automation process, we were able to guarantee the same implementation of the unpacking algorithms for all received messages, thus achieving the objectives for the main modeling standards.

		Model Advisor Rep	ort – MWRI_model.slx
Model Advisor Report	Model Advisor Report Simulink version: 10.1 System: MWRI model	Simulink version: 10.1 System: MWRI_model Treat as Referenced Model: off	Model version: 1.1 Current run: 16-Dec-2021 10:50:05
Simulink version: 10.1 System: MWRI_model Treat as Referenced Model: off Run Summary	Treat as Referenced Model: offRun SummaryPassFailWarning \bigcirc 12 \bigotimes 0 $\widehat{\mathbb{A}}$ 1	Run Summary Pass Fail Warnin ⊘ 84 😢 0 <u>▲</u> 22	ng Not Run Total 2 📃 0 106
 Modeling Standards for MAB 	Dodeling Standards for MISRA C:20	Modeling Standards for ISO 26 12	5262

4. ISO-26262: Qualification Tools

စ္ပဝ

0000

↑

Θ

 \sim

8

R

4. ISO-26262: Qualification Tools

MATHWORKS TOOLCHAIN FOR SOFTWARE QUALIFICATION

The generated models and code are ready for the verification process with all the dedicated tools in order to produce the required work-products for ISO-26262 certification, such as:

- Model configuration and implementation checks → Simulink Check
- Code coverage \rightarrow Simulink Coverage
- Model testing \rightarrow Simulink Test
- Static code analysis → Polyspace

The steps above have been outlined basing on the **ISO-26262 documentation** and with the support of dedicated tools for the safety compliant development (**IEC Certification Toolkit**).

5. Teoresi : Company profile

စ္ပ

0000

U

Θ

 \sim

8

R

Job Teoresi - job@teoresigroup.com

Teoresi at a Glance. KEY NUMBERS

Acting as a «one stop» solutions partner

COMPANIES

Established in Italy, United States, Germany and Switzerland **30+** YEARS OF

In many industries

850+

PEOPLE

Today

49,8 M€ GROUP REVENUE

December 2020

Teoresi at a Glance. WHO WE ARE

Teoresi is an **international services group**, headquartered in Turin and operative on the European and United States markets, which acts as a qualified partner to foster customers product and process development through innovative technologies.

Backed up by a global expertise in engineering, we support our customers by providing **design**, **development and qualified consulting** services, to deliver high performance and innovation in every project challenge.

Corporate Guidelines. OUR CORE VALUES

Network Map.

Operation Operative Regions.

Group Personnel Trend. PEOPLE TREND

Teoresi Training Highlights.

Partnerships. PRODUCT PARTNERS

Reactive Systems, inc

INNOVATION HUB

Partnerships. MAIN ACADEMICAL INSTITUTIONS

Thank you!

www.teoresigroup.com f \bigcirc \square in ν

Contacts

Eugenio Romeo

eugenio.romeo@teoresigroup.com

Paolo Bizzarri

paolo.bizzarri@teoresigroup.com

Job Teoresi - job@teoresigroup.com