Evaluating a multicore Mixed-Criticality System implementation
against a temporal isolation kernel

M. Bottaro

mattiabottaro9@gmail.com

T. Vardanega

tullio.vardanega@unipd.it

|I| B DIPARTIMENTO
MATEMATICA

mailto:mattiabottaro9@gmail.com
mailto:tullio.vardanega@unipd.it

UNIVERSITA

Are MCS practical alternatives to TSP? — 1 DEGLI STUD!

DI PADOVA

e Time and Space Partitioning (TSP) is the standard industrial practice in the
critical-systems domain

e The application is split into multiple partitions according to per-task criticality
ranking (LO, ..., HI)

e Each partition is statically assigned a segregated area of processor memory

e And itis attached to a static cyclc scheduling plan

e The implementation technology needs to enforce memory isolation and strict
adherence to scheduling plan
HI-crit certification (very costly) is applied solely to Hl-crit partitions
Resources are apportioned conservatively, which incurs waste

estimated WCET
< MBJOI' > c exact WCET .
Frame -g measured WCET cibal bl
Partition 1 ||| P2 |‘| P 3 | [Parition’ ||| P2 |‘| P 3 | [Parttion] =
Minor 2 3
w T | safety margin
- | E
Time L/
Image source: https://www.rapitasystems.com/blog/assured- Image source: https:/figlErekives-ouvertes.fr/hal-
partitioning-face-systems 02271379

e .

https://www.rapitasystems.com/blog/assured-partitioning-face-systems
https://hal.archives-ouvertes.fr/hal-02271379

INIVERSITA

Are MCS practical alternatives to TSP? — 2 DEGLI STUD!

)1 PADOVA

e Mixed Criticality Systems (MCS) models have been explored in the RTS
literature to higher utilization without jeopardising HI-crit guarantees

o Where TSP budgets CPU time according to extreme cases

o MCS budgets according to average cases with contingency strategies to
mitigate transient overload situations
o Only temporal isolation to date
e An interesting MCS model for multicore targets uses controlled migration to

further improve CPU utilization (Xu & Burns, JSS, 2019)
e The question becomes: what’s the gain over TSP?

e Our contribution is a reference OSS implementation of the Xu & Burns’ model,
with featherweight event tracing capabilities

e An infrastructure to create synthetic workloads and stress-test scenarios for
equivalent MCS vs TSP mapping

e Automation engines to run controlled experiments, capture trace logs, and
analyse the results comparatively

e

UNIVERSITA

The Xu & Burns model — dual-core implementation

Static view

« Atask can be: LO-crit (), Hl-crit
(red), migratable (blue)
* Migratable tasks are LO-crit

» LO-crit tasks have LO-crit budget

» Hl-crit tasks have {LO-crit, Hl-crit}

budgets
Application Application
Tasks on core A Tasks on core B Tasks on core A %sscoﬁs
@
000 000 o 0 |°

RUNTIME ENVIRONMENT

RUNTIME ENVIRONMENT

£ - 1

o~ BF

Dynamic view

Scheduling is partitioned
Tasks begin to execute LO-crit budget
Both cores are in LO-crit mode

If a HI-crit task exceeds its LO-crit
budget, its CPU starts to execute in HI-
crit mode
» Hil-crit tasks on that core may
execute up to their Hl-crit budget
* Migratable tasks on that core are
moved to the other CPU

Test challenges occur when

Both cores enter HI-crit mode

Any task exceeds its limit budget

Any task misses its deadline in spite of
being deemed feasible

e

NIVERSITA

The working tools |

Processor target
Digilent Cora Z7, Zyng-7000 SoC, dual-core ARM Cortex-A9, 333 MHz

MCS Reference Implementation TSP Trial Implementation

e The application is written in Ada 2012 e XtratuM 2.0.5 hypervisor by fentlSS

e The Ada runtime is modified and e Each CPU hosts two partitions (LO-
extended to support the required crit, Hi-crit)
MCS and tracing features e Each partition runs RTEMS and the
e The basis was provided by same Ada application as the MCS
O https://doi.org/9.1016/j.sysarc.2021.102236 counterpart

e Derived from GNAT CE 2018
provided by AdaCore
e Distributed under GPL v3.0

Application @l r

Application

.
| RTEMS |

pplication
RTEMS
)

Application
Application Application RTEMS ~ @:)
PARTITION A-LO PARTITION B-HI
RTEMS

Tasks on core A Tasks on core B Tasks on core A Tasks on core B I RTEMS

| L 1 A i
. . O . . O . M'Cmg” . ’ PARTITION A-HI PARTITION B-LO

RUNTIME ENVIRONMENT RUNTIME ENVIRONMENT
£ 1F

https://doi.org/10.1016/j.sysarc.2021.102236

UNIVERSITA

Fine-tuning the experiments — 1

DI PADOVA

Actually Schedulable Budget Exceeded Safe Boundary
Exceeded
88.98% 0.16% 9.27% 1.60%
100
55 \/\/W /\\/
a0
65
@ 55 —Aﬁ:tual.\y Schedulable
. s o4 Ry aceeled
35
30
=5 T T T T T T T T

urilization

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: [10,200] ms. Large periods: [400,1000] ms.

UNIVERSITA

Fine-tuning the experiments — 2 DEGLI STUD!

DI PADOVA

Tasks that are found to exceed their limit budget at run time invalidate the experiment
Why does that happen?

Experiment 1; BE tasks grouped by criticality-level budget

14 Cumulative frequencies curve Frequencies histogram | 1.00

12 A r 0.85

10 1 L 0.70

Frequency
o
U
o w
Proportion

14 1’ ’L’LW’L’L’L'lv’If"lv"lv'11'1'1!’\;’1;’\;'\"1;'11’1;1'1'1111’\"1;’\"\;’1"\#
@ 0"’ o_p ‘rf” <)°’ 4>°’ o‘* ‘ga & ‘;a & 6‘* 0"’ & o°’ PSP 4,‘3 @ R N R 0°’ SR GRSy
RN A AR AR AN AR S AV S A T SR S)

Microseconds

More than 85% of such tasks have a tiny limit budget (smaller than 3.6 ms)

e

UNIVERSITA

nghllght findingS EGLI STUDI

)1 PADOVA

e Blue: CPU utilization measured on TSP Variant
: CPU utilization measured on MCS Reference Implementation while hosting the

whole set of migratable tasks
e Green: CPU utilization measured on MCS Reference Implementation with no migration

The data shown are measurements performed on a single CPU

40 1

w
o
L

TSP mean: 0.239

%]
(=]
1

()]

2 10 4

(b}

m 0 T T T
2 0.0 0.2 0.8 1.0
% 80 -

L 60

O 4. MCS “"green" mean: 0.501

| —

@ 20
0

0 T T T T

E 0.0 0.2 0.8 1.0
= 30

%]
(=]
1

MCS "orange"” mean: 0.750

=
[=]
L

[=]

T T
0.0 1.0

Réél CPU utilizgiion during tﬁ'ﬁe hyperperio%jB

Conclusions

 The Xu & Burns’ MCS model is reality-proofed

» For each utilization level in the upper half, more than 80% of the tasksets that
we run were found to be actually schedulable
« Deadline miss events were very rare in spite of the system load being pushed
near the limit steadily
» The tasks that proved to be most difficult to control (without the risk of failure
events) all had very small execution-time budgets
» More plausible for interrupt handlers than for real application tasks

« The MCS Reference Implementation was found to sustain much higher
utilization than the TSP equivalent

 For MCS to become industrial-proof alternatives to TSP they should be augmented
with memory isolation features

e Useful links:
o The runtime environment
o The working repository
o All the graphs and plots

e

https://github.com/BottCode/Ada-RTE-supporting-semi-partitioned-model
https://github.com/BottCode/Exploring-the-viability-of-a-MCS-multicore-runtime-demonstrator-a-comparison-with-a-
https://github.com/BottCode/Exploring-the-viability-of-a-MCS-multicore-runtime-demonstrator-a-comparison-with-a-/wiki

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

