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Are MCS practical alternatives to TSP? — 1 DEGLI STUD!
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e Time and Space Partitioning (TSP) is the standard industrial practice in the
critical-systems domain

e The application is split into multiple partitions according to per-task criticality
ranking (LO, ..., HI)

e Each partition is statically assigned a segregated area of processor memory

e And itis attached to a static cyclc scheduling plan

e The implementation technology needs to enforce memory isolation and strict
adherence to scheduling plan
HI-crit certification (very costly) is applied solely to Hl-crit partitions
Resources are apportioned conservatively, which incurs waste
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Are MCS practical alternatives to TSP? — 2 DEGLI STUD!
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e Mixed Criticality Systems (MCS) models have been explored in the RTS
literature to higher utilization without jeopardising HI-crit guarantees

o Where TSP budgets CPU time according to extreme cases

o MCS budgets according to average cases with contingency strategies to
mitigate transient overload situations
o Only temporal isolation to date
e An interesting MCS model for multicore targets uses controlled migration to

further improve CPU utilization (Xu & Burns, JSS, 2019)
e The question becomes: what’s the gain over TSP?

e Our contribution is a reference OSS implementation of the Xu & Burns’ model,
with featherweight event tracing capabilities

e An infrastructure to create synthetic workloads and stress-test scenarios for
equivalent MCS vs TSP mapping

e Automation engines to run controlled experiments, capture trace logs, and
analyse the results comparatively
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The Xu & Burns model — dual-core implementation

Static view

« Atask can be: LO-crit ( ), Hl-crit
(red), migratable (blue)
* Migratable tasks are LO-crit

» LO-crit tasks have LO-crit budget

» Hl-crit tasks have {LO-crit, Hl-crit}
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Dynamic view

Scheduling is partitioned
Tasks begin to execute LO-crit budget
Both cores are in LO-crit mode

If a HI-crit task exceeds its LO-crit
budget, its CPU starts to execute in HI-
crit mode
» Hil-crit tasks on that core may
execute up to their Hl-crit budget
* Migratable tasks on that core are
moved to the other CPU

Test challenges occur when

Both cores enter HI-crit mode

Any task exceeds its limit budget

Any task misses its deadline in spite of
being deemed feasible
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The working tools |

Processor target
Digilent Cora Z7, Zyng-7000 SoC, dual-core ARM Cortex-A9, 333 MHz

MCS Reference Implementation TSP Trial Implementation

e The application is written in Ada 2012 e XtratuM 2.0.5 hypervisor by fentlSS

e The Ada runtime is modified and e Each CPU hosts two partitions (LO-
extended to support the required crit, Hi-crit)
MCS and tracing features e Each partition runs RTEMS and the
e The basis was provided by same Ada application as the MCS
O  https://doi.org/9.1016/j.sysarc.2021.102236 counterpart

e Derived from GNAT CE 2018
provided by AdaCore
e Distributed under GPL v3.0
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Fine-tuning the experiments — 1
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Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: [10,200] ms. Large periods: [400,1000] ms.
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Fine-tuning the experiments — 2 DEGLI STUD!

DI PADOVA

Tasks that are found to exceed their limit budget at run time invalidate the experiment
Why does that happen?

Experiment 1; BE tasks grouped by criticality-level budget
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More than 85% of such tasks have a tiny limit budget (smaller than 3.6 ms)

e



UNIVERSITA

nghllght findingS EGLI STUDI

)1 PADOVA

e Blue: CPU utilization measured on TSP Variant
: CPU utilization measured on MCS Reference Implementation while hosting the

whole set of migratable tasks
e Green: CPU utilization measured on MCS Reference Implementation with no migration

The data shown are measurements performed on a single CPU
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Conclusions

 The Xu & Burns’ MCS model is reality-proofed

» For each utilization level in the upper half, more than 80% of the tasksets that
we run were found to be actually schedulable
« Deadline miss events were very rare in spite of the system load being pushed
near the limit steadily
» The tasks that proved to be most difficult to control (without the risk of failure
events) all had very small execution-time budgets
» More plausible for interrupt handlers than for real application tasks

« The MCS Reference Implementation was found to sustain much higher
utilization than the TSP equivalent

 For MCS to become industrial-proof alternatives to TSP they should be augmented
with memory isolation features

e Useful links:
o The runtime environment
o The working repository
o All the graphs and plots

e
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