
Evaluating a multicore Mixed-Criticality System implementation 
against a temporal isolation kernel

UNIVERSITY OF PADOVA
Department of Mathematics

M. Bottaro
mattiabottaro9@gmail.com

T. Vardanega
tullio.vardanega@unipd.it

mailto:mattiabottaro9@gmail.com
mailto:tullio.vardanega@unipd.it


2/9

Image source: https://www.rapitasystems.com/blog/assured-
partitioning-face-systems

● Time and Space Partitioning (TSP) is the standard industrial practice in the 
critical-systems domain

● The application is split into multiple partitions according to per-task criticality 
ranking (LO, …, HI)

● Each partition is statically assigned a segregated area of processor memory
● And it is attached to a static cyclc scheduling plan
● The implementation technology needs to enforce memory isolation and strict 

adherence to scheduling plan
● HI-crit certification (very costly) is applied solely to HI-crit partitions
● Resources are apportioned conservatively, which incurs waste

Image source: https://hal.archives-ouvertes.fr/hal-
02271379

Are MCS practical alternatives to TSP? – 1

https://www.rapitasystems.com/blog/assured-partitioning-face-systems
https://hal.archives-ouvertes.fr/hal-02271379


3/9

● Mixed Criticality Systems (MCS) models have been explored in the RTS 
literature to higher utilization without jeopardising HI-crit guarantees
○ Where TSP budgets CPU time according to extreme cases
○ MCS budgets according to average cases with contingency strategies to 

mitigate transient overload situations 
○ Only temporal isolation to date

● An interesting MCS model for multicore targets uses controlled migration to 
further improve CPU utilization (Xu & Burns, JSS, 2019) 

● The question becomes: what’s the gain over TSP?

● Our contribution is a reference OSS implementation of the Xu & Burns’ model, 
with featherweight event tracing capabilities

● An infrastructure to create synthetic workloads and stress-test scenarios for 
equivalent MCS vs TSP mapping

● Automation engines to run controlled experiments, capture trace logs, and 
analyse the results comparatively

Are MCS practical alternatives to TSP? – 2



4/9

The Xu & Burns model – dual-core implementation

• A task can be: LO-crit (green), HI-crit 
(red), migratable (blue)
• Migratable tasks are LO-crit

• LO-crit tasks have LO-crit budget

• HI-crit tasks have {LO-crit, HI-crit} 
budgets

Static view

• Scheduling is partitioned
• Tasks begin to execute LO-crit budget
• Both cores are in LO-crit mode

• If a HI-crit task exceeds its LO-crit 
budget, its CPU starts to execute in HI-
crit mode

• HI-crit tasks on that core may 
execute up to their HI-crit budget

• Migratable tasks on that core are 
moved to the other CPU

• Test challenges occur when
• Both cores enter HI-crit mode
• Any task exceeds its limit budget
• Any task misses its deadline in spite of 

being deemed feasible

Dynamic view



5/9

The working tools
Processor target

Digilent Cora Z7, Zynq-7000 SoC, dual-core ARM Cortex-A9, 333 MHz

MCS Reference Implementation TSP Trial Implementation

● The application is written in Ada 2012
● The Ada runtime is modified and 

extended to support the required 
MCS and tracing features

● The basis was provided by
○ https://doi.org/9.1016/j.sysarc.2021.102236

● Derived from GNAT CE 2018 
provided by AdaCore

● Distributed under GPL v3.0

● XtratuM 2.0.5 hypervisor by fentISS
● Each CPU hosts two partitions (LO-

crit, HI-crit)
● Each partition runs RTEMS and the 

same Ada application as the MCS 
counterpart

https://doi.org/10.1016/j.sysarc.2021.102236


6/9

Fine-tuning the experiments – 1

Actually Schedulable Deadline Missed Budget Exceeded Safe Boundary 
Exceeded

88.98% 0.16% 9.27% 1.60%



7/9

Fine-tuning the experiments – 2

More than 85% of such tasks have a tiny limit budget (smaller than 3.6 ms)

Tasks that are found to exceed their limit budget at run time invalidate the experiment
Why does that happen?



8/9

Highlight findings

● Blue: CPU utilization measured on TSP Variant
● Orange: CPU utilization measured on MCS Reference Implementation while hosting the 

whole set of migratable tasks
● Green: CPU utilization measured on MCS Reference Implementation with no migration

The data shown are measurements performed on a single CPU



9/9

Conclusions

• The Xu & Burns’ MCS model is reality-proofed
• For each utilization level in the upper half, more than 80% of the tasksets that 

we run were found to be actually schedulable
• Deadline miss events were very rare in spite of the system load being pushed 

near the limit steadily
• The tasks that proved to be most difficult to control (without the risk of failure 

events) all had very small execution-time budgets
• More plausible for interrupt handlers than for real application tasks

• The MCS Reference Implementation was found to sustain much higher 
utilization than the TSP equivalent

• For MCS to become industrial-proof alternatives to TSP they should be augmented 
with memory isolation features

● Useful links:
○ The runtime environment
○ The working repository
○ All the graphs and plots

https://github.com/BottCode/Ada-RTE-supporting-semi-partitioned-model
https://github.com/BottCode/Exploring-the-viability-of-a-MCS-multicore-runtime-demonstrator-a-comparison-with-a-
https://github.com/BottCode/Exploring-the-viability-of-a-MCS-multicore-runtime-demonstrator-a-comparison-with-a-/wiki

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

