
Failure modes and failures mitigation in
GPGPUs: A reference model and its

application

Francesco Terrosi
francesco.terrosi@unifi.it

Andrea Ceccarelli
andrea.ceccarelli@unifi.it

Andrea Bondavalli
andrea.bondavalli@unifi.it

University of Florence – Italy

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Introduction
► General-Purpose Graphics Processing Units (GPGPUs) are now used

in fields such as High-Performance Computing and Machine Learning
applications

► This led researchers and practitioners to focus on the fault-tolerance
properties of these devices

► We propose a reference model to characterize the failure modes of a
GPGPU at different layers

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Graphics Processing Units

GPGPU Architecture

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Architecture – GPU
► GPU – TOP LEVEL:

– global memory (L2 Cache + possible off-chip DRAM), GigaThread Engine (the Global
Scheduler), Host Interface, DRAM Channels and the Streaming Multiprocessors (SM).

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Architecture
Streaming Multiprocessor

► STREAMING MULTIPROCESSOR: Clusters of processors, each processor has
its own resources and shares the same L1 Caches

– inside an SM, groups of 32 threads (warps) are scheduled per clock cycle

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Architecture
Memory Hierarchy

► The memory hierarchy is designed to maximize the bandwidth of
data transfers

– The L2 Cache is designed as a bandwidth filter for DRAM

Slow

Fast

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Graphics Processing Units

GPU Services and Failure Modes

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Services and Failure Modes

► GPGPUs are made of many similar replicated components

► We can group these components in three categories:

– Computation components (Streaming Multiprocessors, GigaThread Engine and
Warp Schedulers, CUDA Cores, Load/Store Units)

– Memory components (DRAM, Cache memories, Register Files)

– Communication components (Host Interface, DRAM Channels)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Services and Failure Modes

► Computation Components: Compute service
– The process of performing arithmetic/logic operations

► Memory Components: Read, Write services
– The read service is the process of retrieving (read) for a memory location specified

by its address
– The write service is the process of storing (write) data in a memory location

specified by its address

► Communication Components: Send, Receive services
– Send is the process of sending data over a channel
– Receive is the process of receiving data being transferred over a channel

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Services and Failure Modes
► The GPU can be seen as a system providing a set of services

► These services are offered by the GPU thanks to the combination of
the services offered by its components

► The outcome of each service may be correct or incorrect

► To analyze the outcomes of these services, we define two functions:

1. Correct Service: CS(component, service, input, ti, tmin, tmax) = (v, tv)
2. Delivered Service: DS(component, service, input, ti, tmin, tmax) = (w, tw)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Services and Failure Modes

CORRECT SERVICE

► CS(component, service, input, ti, tmin, tmax) = (v, tv)
► DS(component, service, input, ti, tmin, tmax) = (w, tw)

a) The service delivered by a component is said to be correctly valued if
w = v

b) The service delivered by a component is said to be correctly timed,
in the presence of a finite timing constraint defined by the lower
and upper bounds tmin and tmax if:

ti + tmin ≤ tw ≤ ti + tmax

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Services and Failure Modes
► CS(GPU, Compute, x, ti, tmin, tmax) = (y, ty) CORRECT

► CONTENT FAILURE
– DS(GPU, Compute, x, ti, tmin, tmax) = (z, ty) WRONG
– DS(GPU, Compute, x, ti, tmin, tmax) = (null, ty) NOT

► TIMING FAILURE
– DS(GPU, Compute, x, ti, tmin, tmax) = (y, tz) EARLY tz< ti + tmin

– DS(GPU, Compute, x, ti, tmin, tmax) = (y, tz) LATE tz> ti + tmax

► CONTENT AND TIMING FAILURE
– DS(GPU, Compute, x, ti, tmin, tmax) = (z, tz) ERRATIC tz < ti + tmin

or
tz> ti + tmax

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Graphics Processing Units

GPU Failure Detection and Recovery

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Failure Detection

► The last section of the work consists in a study of the robustness of a
GPGPU in three steps:

1. Literature review of the protection techniques developed for
GPGPUs (novel techniques or adapted from the CPU domain)

2. What are the component and/or service protected by a specific
technique

3. What are the failures protected by the specific technique

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Compute Failure Detection

► Computation components: replication with comparison at different
granularities:

– Global replication – GPU (adapted by CPU)
– Intra-thread replication – Thread level (adapted by CPU)
– Inter-thread replication – Warp level – (leverages inner redundancy of GPUs)

► Hardware Checkers – Comparison is perform using specialized
hardware (adapted by CPU, hard for GPU)

► Warp Scheduler protection – Software modification technique that
allows to detect failures in the warp scheduler units (specific for
GPUs)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Memory Failure Detection
► Memory components are one of the main failure causes in GPGPUs

(high temperatures; frequent accesses to memory to read/write
streams of data)

► This led NVIDIA to introduce a Single Error Correction Double Error
Detection Error Correction Code (SECDED ECC) in all the key memory
structures of their GPUs

► SECDED ECC can correct 1-bit errors, and detect 2 bits-errors

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Communication Failure
Detection

► GPUs use communication components to communicate with the
Host system and the off-chip DRAM, namely the Host Interface and
the DRAM Channels

► These buffered channels are protected by a Cyclic Redundancy
Check (CRC) mechanism with retry

► The Host Interface is implemented with the Peripheral Component
Interconnect Express (PCIe) standard, which comes with many built-
in error-detection capabilities (and CRC with retry)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Computation Failure Recovery

► Transient failures in Computation Components can be recovered
with triple replication

– Perform 3 execution of the same instruction, if there is agreement on at least 2
outputs, the failure can be masked

► Permanent failures in SMs require to isolate the failed SM. The
proposed approach is to redefine the scheduling strategy to avoid
using the corrupted unit, at the cost of reducing throughput by 1/N
(where N is the amount of SMs)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Memory Failure Recovery

► The SECDED ECC mechanism always correct 1-bit failures. 2-bits
failures are somehow “corrected” with a page (i.e., DRAM row)
retirement mechanism, preventing the GPU to use the corrupted
memory area in future executions

– This works both for transient and permanent failures

► In the case of a permanent failure in one of the memories,
continuously applying this mechanism could reduce the overall
throughput of the GPU

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Communication Failure
Recovery

► Transient failures in communication components are corrected by
the CRC with retry mechanism

► Permanent failures in communication components can not be
recovered with the present mechanism. However, it was reported
that some permanent failures in the Host Interface could be
recovered just by cleaning the GPU connectors

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

GPU Global Protection

GPU Streaming
Multiprocessor

Memory
Hierarchy

GigaThread
Engine Host Interface DRAM

Channels

WRONG

Global
Replication

Inter/Intra-thread
Replication

Hardware/Softwa
re Checkers

SECDED
ECC

Not protected

PCI Express
Interface

CRC with Retry

Advanced Error
Reporting

CRC With
Retry

NOT Not
protected

EARLY

Inter/Intra-thread
Replication

Not
protected

LATE Not
protected

ERRATIC Global
Replication

SECDED
ECC

(Value only)

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Graphics Processing Units

Summarizing View

Italian Workshop on Embedded Systems – IWES, 8-9 February 2021

Summarizing View
► The architecture of a GPU is redundant by design, it can be

decomposed at different granularities

► GPU and its components provides a set of services which may be
correct or incorrect

► Currently available fault-tolerance techniques for GPUs were
reviewed with respect to the protected component, and the failure
mode

► Results showed that some components still need protection

	Failure modes and failures mitigation in GPGPUs: A reference model and its application
	Introduction
	Graphics Processing Units
	GPU Architecture – GPU
	GPU Architecture�Streaming Multiprocessor
	GPU Architecture�Memory Hierarchy
	Graphics Processing Units
	GPU Services and Failure Modes
	GPU Services and Failure Modes
	GPU Services and Failure Modes
	GPU Services and Failure Modes
	GPU Services and Failure Modes
	Graphics Processing Units
	GPU Failure Detection
	GPU Compute Failure Detection
	GPU Memory Failure Detection
	GPU Communication Failure Detection
	GPU Computation Failure Recovery
	GPU Memory Failure Recovery
	GPU Communication Failure Recovery
	GPU Global Protection
	Graphics Processing Units
	Summarizing View

